Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 160

Similar articles for PubMed (Select 23358521)

1.

Inverse opal structured α-Fe2O3 on graphene thin films: enhanced photo-assisted water splitting.

Zhang K, Shi X, Kim JK, Lee JS, Park JH.

Nanoscale. 2013 Mar 7;5(5):1939-44. doi: 10.1039/c2nr33036a.

PMID:
23358521
2.

Constructing inverse opal structured hematite photoanodes via electrochemical process and their application to photoelectrochemical water splitting.

Shi X, Zhang K, Shin K, Moon JH, Lee TW, Park JH.

Phys Chem Chem Phys. 2013 Jul 28;15(28):11717-22. doi: 10.1039/c3cp50459j.

PMID:
23752489
3.

Hematite-based photoelectrochemical water splitting supported by inverse opal structures of graphene.

Yoon KY, Lee JS, Kim K, Bak CH, Kim SI, Kim JB, Jang JH.

ACS Appl Mater Interfaces. 2014 Dec 24;6(24):22634-9. doi: 10.1021/am506721a. Epub 2014 Dec 3.

PMID:
25469502
4.

Ethylene glycol adjusted nanorod hematite film for active photoelectrochemical water splitting.

Fu L, Yu H, Li Y, Zhang C, Wang X, Shao Z, Yi B.

Phys Chem Chem Phys. 2014 Mar 7;16(9):4284-90. doi: 10.1039/c3cp54240h.

PMID:
24451918
5.

Nanostructure-Preserved Hematite Thin Film for Efficient Solar Water Splitting.

Kim JY, Youn DH, Kim JH, Kim HG, Lee JS.

ACS Appl Mater Interfaces. 2015 Jul 1;7(25):14123-9. doi: 10.1021/acsami.5b03409. Epub 2015 Jun 18.

PMID:
26046296
6.

Facile synthesis of highly photoactive α-Fe₂O₃-based films for water oxidation.

Wang G, Ling Y, Wheeler DA, George KE, Horsley K, Heske C, Zhang JZ, Li Y.

Nano Lett. 2011 Aug 10;11(8):3503-9. doi: 10.1021/nl202316j. Epub 2011 Jul 25.

PMID:
21766825
7.

Back electron-hole recombination in hematite photoanodes for water splitting.

Le Formal F, Pendlebury SR, Cornuz M, Tilley SD, Grätzel M, Durrant JR.

J Am Chem Soc. 2014 Feb 12;136(6):2564-74. doi: 10.1021/ja412058x. Epub 2014 Jan 30.

PMID:
24437340
8.

Surface engineered doping of hematite nanorod arrays for improved photoelectrochemical water splitting.

Shen S, Zhou J, Dong CL, Hu Y, Tseng EN, Guo P, Guo L, Mao SS.

Sci Rep. 2014 Oct 15;4:6627. doi: 10.1038/srep06627.

9.

Mesoporous α-Fe2O3 thin films synthesized via the sol-gel process for light-driven water oxidation.

Hamd W, Cobo S, Fize J, Baldinozzi G, Schwartz W, Reymermier M, Pereira A, Fontecave M, Artero V, Laberty-Robert C, Sanchez C.

Phys Chem Chem Phys. 2012 Oct 14;14(38):13224-32. doi: 10.1039/c2cp42535a.

PMID:
22911106
10.

Enhanced photocurrent density of hematite thin films on FTO substrates: effect of post-annealing temperature.

Cho ES, Kang MJ, Kang YS.

Phys Chem Chem Phys. 2015 Jun 28;17(24):16145-50. doi: 10.1039/c5cp01823d. Epub 2015 Jun 2.

PMID:
26032403
11.

Templating Sol-Gel Hematite Films with Sacrificial Copper Oxide: Enhancing Photoanode Performance with Nanostructure and Oxygen Vacancies.

Li Y, Guijarro N, Zhang X, Prévot MS, Jeanbourquin XA, Sivula K, Chen H, Li Y.

ACS Appl Mater Interfaces. 2015 Aug 12;7(31):16999-7007. doi: 10.1021/acsami.5b02111. Epub 2015 Jul 30.

PMID:
26186065
12.

Core-shell hematite nanorods: a simple method to improve the charge transfer in the photoanode for photoelectrochemical water splitting.

Gurudayal, Chee PM, Boix PP, Ge H, Yanan F, Barber J, Wong LH.

ACS Appl Mater Interfaces. 2015 Apr 1;7(12):6852-9. doi: 10.1021/acsami.5b00417. Epub 2015 Mar 20.

PMID:
25790720
13.

TiO2 and Fe2O3 films for photoelectrochemical water splitting.

Krysa J, Zlamal M, Kment S, Brunclikova M, Hubicka Z.

Molecules. 2015 Jan 9;20(1):1046-58. doi: 10.3390/molecules20011046.

14.

On the mechanism for nanoplasmonic enhancement of photon to electron conversion in nanoparticle sensitized hematite films.

Iandolo B, Antosiewicz TJ, Hellman A, Zorić I.

Phys Chem Chem Phys. 2013 Apr 14;15(14):4947-54. doi: 10.1039/c3cp44483j.

PMID:
23439980
15.

A Ga2O3 underlayer as an isomorphic template for ultrathin hematite films toward efficient photoelectrochemical water splitting.

Hisatomi T, Brillet J, Cornuz M, Le Formal F, Tétreault N, Sivula K, Grätzel M.

Faraday Discuss. 2012;155:223-32; discussion 297-308.

PMID:
22470976
16.

Photoanodes with Fully Controllable Texture: The Enhanced Water Splitting Efficiency of Thin Hematite Films Exhibiting Solely (110) Crystal Orientation.

Kment S, Schmuki P, Hubicka Z, Machala L, Kirchgeorg R, Liu N, Wang L, Lee K, Olejnicek J, Cada M, Gregora I, Zboril R.

ACS Nano. 2015 Jul 28;9(7):7113-23. doi: 10.1021/acsnano.5b01740. Epub 2015 Jun 23.

PMID:
26083741
17.

PRED treatment mediated stable and efficient water oxidation performance of the Fe2O3 nano-coral structure.

Shinde PS, Lee HH, Lee SY, Lee YM, Jang JS.

Nanoscale. 2015 Aug 24. [Epub ahead of print]

PMID:
26300305
18.

New benchmark for water photooxidation by nanostructured alpha-Fe2O3 films.

Kay A, Cesar I, Grätzel M.

J Am Chem Soc. 2006 Dec 13;128(49):15714-21.

PMID:
17147381
19.

n-Fe₂O₃ to N⁺-TiO₂Heterojunction Photoanode for Photoelectrochemical Water Oxidation.

Yang JS, Lin WH, Lin CY, Wang BS, Wu JJ.

ACS Appl Mater Interfaces. 2015 Jun 24;7(24):13314-21. doi: 10.1021/acsami.5b01489. Epub 2015 Jun 10.

PMID:
26027640
20.

Reactive ballistic deposition of alpha-Fe2O3 thin films for photoelectrochemical water oxidation.

Hahn NT, Ye H, Flaherty DW, Bard AJ, Mullins CB.

ACS Nano. 2010 Apr 27;4(4):1977-86. doi: 10.1021/nn100032y.

PMID:
20361756
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk