Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 121

1.

Surface-enhanced Raman scattering from magneto-metal nanoparticle assemblies.

Qu H, Lai Y, Niu D, Sun S.

Anal Chim Acta. 2013 Feb 6;763:38-42. doi: 10.1016/j.aca.2012.12.016. Epub 2012 Dec 19.

PMID:
23340284
[PubMed]
2.

Surface-enhanced Raman scattering substrates of high-density and high-homogeneity hot spots by magneto-metal nanoprobe assembling.

Zhang L, Dong WF, Tang ZY, Song JF, Xia H, Sun HB.

Opt Lett. 2010 Oct 1;35(19):3297-9. doi: 10.1364/OL.35.003297.

PMID:
20890365
[PubMed - indexed for MEDLINE]
3.

Gold and magnetic oxide/gold core/shell nanoparticles as bio-functional nanoprobes.

Lim II, Njoki PN, Park HY, Wang X, Wang L, Mott D, Zhong CJ.

Nanotechnology. 2008 Jul 30;19(30):305102. doi: 10.1088/0957-4484/19/30/305102. Epub 2008 Jun 16.

PMID:
21828754
[PubMed]
4.

Tunable fabrication on iron oxide/Au/Ag nanostructures for surface enhanced Raman spectroscopy and magnetic enrichment.

Han SY, Guo QH, Xu MM, Yuan YX, Shen LM, Yao JL, Liu W, Gu RA.

J Colloid Interface Sci. 2012 Jul 15;378(1):51-7. doi: 10.1016/j.jcis.2012.04.047. Epub 2012 Apr 26.

PMID:
22583528
[PubMed]
5.

Surface-enhanced Raman scattering detection of DNAs derived from virus genomes using Au-coated paramagnetic nanoparticles.

Zhang H, Harpster MH, Wilson WC, Johnson PA.

Langmuir. 2012 Feb 28;28(8):4030-7. doi: 10.1021/la204890t. Epub 2012 Feb 15.

PMID:
22276995
[PubMed - indexed for MEDLINE]
6.

Raman scattering of 4-aminobenzenethiol sandwiched between Ag nanoparticle and macroscopically smooth Au substrate: effects of size of Ag nanoparticles and the excitation wavelength.

Kim K, Choi JY, Lee HB, Shin KS.

J Chem Phys. 2011 Sep 28;135(12):124705. doi: 10.1063/1.3640890.

PMID:
21974550
[PubMed - indexed for MEDLINE]
7.

Fabrication of dense two-dimensional assemblies over vast areas comprising gold(core)-silver(shell) nanoparticles and their surface-enhanced Raman scattering properties.

Sugawa K, Tanoue Y, Ube T, Yanagida S, Yamamuro T, Kusaka Y, Ushijima H, Akiyama T.

Photochem Photobiol Sci. 2014 Jan;13(1):82-91. doi: 10.1039/c3pp50281c. Epub 2013 Nov 13.

PMID:
24220219
[PubMed]
8.

Noble metal coated single-walled carbon nanotubes for applications in surface enhanced Raman scattering imaging and photothermal therapy.

Wang X, Wang C, Cheng L, Lee ST, Liu Z.

J Am Chem Soc. 2012 May 2;134(17):7414-22. doi: 10.1021/ja300140c. Epub 2012 Apr 18.

PMID:
22486413
[PubMed - indexed for MEDLINE]
9.

Highly sensitive immunoassay based on SERS using nano-Au immune probes and a nano-Ag immune substrate.

Shu L, Zhou J, Yuan X, Petti L, Chen J, Jia Z, Mormile P.

Talanta. 2014 Jun;123:161-8. doi: 10.1016/j.talanta.2014.02.015. Epub 2014 Feb 14.

PMID:
24725879
[PubMed - in process]
10.

Non-lithographic SERS substrates: tailoring surface chemistry for Au nanoparticle cluster assembly.

Adams SM, Campione S, Caldwell JD, Bezares FJ, Culbertson JC, Capolino F, Ragan R.

Small. 2012 Jul 23;8(14):2239-49. doi: 10.1002/smll.201102708. Epub 2012 Apr 23.

PMID:
22528745
[PubMed]
11.

Surface-enhanced Raman scattering (SERS) detection of multiple viral antigens using magnetic capture of SERS-active nanoparticles.

Neng J, Harpster MH, Wilson WC, Johnson PA.

Biosens Bioelectron. 2013 Mar 15;41:316-21. doi: 10.1016/j.bios.2012.08.048. Epub 2012 Aug 29.

PMID:
23021841
[PubMed - indexed for MEDLINE]
12.

Au nanoparticle-encapsulated hydrogel substrates for robust and reproducible SERS measurement.

Shin K, Ryu K, Lee H, Kim K, Chung H, Sohn D.

Analyst. 2013 Feb 21;138(3):932-8. doi: 10.1039/c2an35862j.

PMID:
23232290
[PubMed]
13.

Multifunctional Fe3O4@Ag/SiO2/Au core-shell microspheres as a novel SERS-activity label via long-range plasmon coupling.

Shen J, Zhu Y, Yang X, Zong J, Li C.

Langmuir. 2013 Jan 15;29(2):690-5. doi: 10.1021/la304048v. Epub 2012 Dec 27.

PMID:
23206276
[PubMed]
14.

The effects of Au aggregate morphology on surface-enhanced Raman scattering enhancement.

Sztainbuch IW.

J Chem Phys. 2006 Sep 28;125(12):124707.

PMID:
17014200
[PubMed]
15.

Single nanoparticle based optical pH probe.

Jensen RA, Sherin J, Emory SR.

Appl Spectrosc. 2007 Aug;61(8):832-8.

PMID:
17716401
[PubMed - indexed for MEDLINE]
16.

Magnetic Fe3O4@Au composite-enhanced surface plasmon resonance for ultrasensitive detection of magnetic nanoparticle-enriched α-fetoprotein.

Liang RP, Yao GH, Fan LX, Qiu JD.

Anal Chim Acta. 2012 Aug 6;737:22-8. doi: 10.1016/j.aca.2012.05.043. Epub 2012 Jun 9.

PMID:
22769032
[PubMed - indexed for MEDLINE]
17.

Improved surface-enhanced Raman scattering on micro-scale Au hollow spheres: synthesis and application in detecting tetracycline.

Li R, Zhang H, Chen QW, Yan N, Wang H.

Analyst. 2011 Jun 21;136(12):2527-32. doi: 10.1039/c1an15195a. Epub 2011 Apr 26.

PMID:
21523294
[PubMed]
18.

Shell-isolated nanoparticle-enhanced Raman spectroscopy: expanding the versatility of surface-enhanced Raman scattering.

Anema JR, Li JF, Yang ZL, Ren B, Tian ZQ.

Annu Rev Anal Chem (Palo Alto Calif). 2011;4:129-50. doi: 10.1146/annurev.anchem.111808.073632.

PMID:
21370987
[PubMed]
19.

Synthesis, characterization, and 3D-FDTD simulation of Ag@SiO2 nanoparticles for shell-isolated nanoparticle-enhanced Raman spectroscopy.

Uzayisenga V, Lin XD, Li LM, Anema JR, Yang ZL, Huang YF, Lin HX, Li SB, Li JF, Tian ZQ.

Langmuir. 2012 Jun 19;28(24):9140-6. doi: 10.1021/la3005536. Epub 2012 May 11.

PMID:
22506587
[PubMed]
20.

Gold nanorods with finely tunable longitudinal surface plasmon resonance as SERS substrates.

Smitha SL, Gopchandran KG, Ravindran TR, Prasad VS.

Nanotechnology. 2011 Jul 1;22(26):265705. doi: 10.1088/0957-4484/22/26/265705. Epub 2011 May 17.

PMID:
21576800
[PubMed]

Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk