Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 127

1.

Synthesis and characterization of a new class of stabilized apatite nanoparticles and applying the particles to in situ Pb immobilization in a fire-range soil.

Liu R, Zhao D.

Chemosphere. 2013 Apr;91(5):594-601. doi: 10.1016/j.chemosphere.2012.12.034. Epub 2013 Jan 19.

PMID:
23336925
[PubMed - indexed for MEDLINE]
2.

Reducing leachability and bioaccessibility of lead in soils using a new class of stabilized iron phosphate nanoparticles.

Liu R, Zhao D.

Water Res. 2007 Jun;41(12):2491-502. Epub 2007 May 7.

PMID:
17482234
[PubMed - indexed for MEDLINE]
3.

Comparative value of phosphate sources on the immobilization of lead, and leaching of lead and phosphorus in lead contaminated soils.

Park JH, Bolan N, Megharaj M, Naidu R.

Sci Total Environ. 2011 Jan 15;409(4):853-60. doi: 10.1016/j.scitotenv.2010.11.003. Epub 2010 Dec 4.

PMID:
21130488
[PubMed - indexed for MEDLINE]
4.

Immobilization of lead in shooting range soils by means of cement, quicklime, and phosphate amendments.

Cao X, Dermatas D, Xu X, Shen G.

Environ Sci Pollut Res Int. 2008 Mar;15(2):120-7.

PMID:
18380230
[PubMed - indexed for MEDLINE]
5.

Apatite ore mine tailings as an amendment for remediation of a lead-contaminated shooting range soil.

Venäläinen SH.

Sci Total Environ. 2011 Oct 1;409(21):4628-34. doi: 10.1016/j.scitotenv.2011.08.002. Epub 2011 Aug 25.

PMID:
21871651
[PubMed - indexed for MEDLINE]
6.

In situ immobilization of Cu(II) in soils using a new class of iron phosphate nanoparticles.

Liu R, Zhao D.

Chemosphere. 2007 Aug;68(10):1867-76. Epub 2007 Apr 25.

PMID:
17462708
[PubMed - indexed for MEDLINE]
7.

Immobilization of mercury in field soil and sediment using carboxymethyl cellulose stabilized iron sulfide nanoparticles.

Gong Y, Liu Y, Xiong Z, Kaback D, Zhao D.

Nanotechnology. 2012 Jul 27;23(29):294007. doi: 10.1088/0957-4484/23/29/294007. Epub 2012 Jun 28.

PMID:
22743738
[PubMed - indexed for MEDLINE]
8.

[Effect of chlorine and phosphorus on water soluble and exchangeable lead in a soil contaminated by lead and zinc mining tailings].

Wang BL, Xie ZM, Li J, Wu WH, Jiang JT.

Huan Jing Ke Xue. 2008 Jun;29(6):1724-8. Chinese.

PMID:
18763530
[PubMed - indexed for MEDLINE]
9.

Immobilization of lead in contaminated firing range soil using biochar.

Moon DH, Park JW, Chang YY, Ok YS, Lee SS, Ahmad M, Koutsospyros A, Park JH, Baek K.

Environ Sci Pollut Res Int. 2013 Dec;20(12):8464-71. doi: 10.1007/s11356-013-1964-7. Epub 2013 Jul 16.

PMID:
23856742
[PubMed - indexed for MEDLINE]
10.

[Effect and mechanism of immobilization of cadmium and lead compound contaminated soil using new hybrid material].

Wang L, Xu YM, Liang XF, Sun Y, Qin X.

Huan Jing Ke Xue. 2011 Feb;32(2):581-8. Chinese.

PMID:
21528587
[PubMed - indexed for MEDLINE]
11.

Phosphate-induced lead immobilization from different lead minerals in soils under varying pH conditions.

Cao X, Ma LQ, Singh SP, Zhou Q.

Environ Pollut. 2008 Mar;152(1):184-92. Epub 2007 Jun 29.

PMID:
17601642
[PubMed - indexed for MEDLINE]
12.

[Evaluation of phosphate-containing amendments on remediation effect and influential factors in a lead/zinc mining tailings contaminated soil using TCLP and forms].

Chen JJ, Yu TM, Wang BL, Xie ZM.

Huan Jing Ke Xue. 2010 Jan;31(1):185-91. Chinese.

PMID:
20329537
[PubMed - indexed for MEDLINE]
13.

Immobilization of As(III) in soil and groundwater using a new class of polysaccharide stabilized Fe-Mn oxide nanoparticles.

An B, Zhao D.

J Hazard Mater. 2012 Apr 15;211-212:332-41. doi: 10.1016/j.jhazmat.2011.10.062. Epub 2011 Nov 10.

PMID:
22119304
[PubMed - indexed for MEDLINE]
14.

Environmental monitoring of the role of phosphate compounds in enhancing immobilization and reducing bioavailability of lead in contaminated soils.

Park JH, Bolan NS, Chung JW, Naidu R, Megharaj M.

J Environ Monit. 2011 Aug;13(8):2234-42. doi: 10.1039/c1em10275c. Epub 2011 Jul 11.

PMID:
21748178
[PubMed - indexed for MEDLINE]
15.

Application methods affect phosphorus-induced lead immobilization from a contaminated soil.

Yoon JK, Cao X, Ma LQ.

J Environ Qual. 2007 Jan 25;36(2):373-8. Print 2007 Mar-Apr.

PMID:
17255624
[PubMed - indexed for MEDLINE]
16.

Enhanced transformation of lead speciation in rhizosphere soils using phosphorus amendments and phytostabilization: an x-ray absorption fine structure spectroscopy investigation.

Hashimoto Y, Takaoka M, Shiota K.

J Environ Qual. 2011 May-Jun;40(3):696-703. doi: 10.2134/jeq2010.0057.

PMID:
21546656
[PubMed - indexed for MEDLINE]
17.

Impacts of phosphate amendments on lead biogeochemistry at a contaminated site.

Cao X, Ma LQ, Chen M, Singh SP, Harris WG.

Environ Sci Technol. 2002 Dec 15;36(24):5296-304.

PMID:
12521153
[PubMed - indexed for MEDLINE]
18.

Evaluation of the effectiveness of phosphate treatment for the remediation of mine waste soils contaminated with Cd, Cu, Pb, and Zn.

Mignardi S, Corami A, Ferrini V.

Chemosphere. 2012 Jan;86(4):354-60. doi: 10.1016/j.chemosphere.2011.09.050. Epub 2011 Oct 22.

PMID:
22024096
[PubMed - indexed for MEDLINE]
19.

Long-term efficiency of soil stabilization with apatite and Slovakite: the impact of two earthworm species (Lumbricus terrestris and Dendrobaena veneta) on lead bioaccessibility and soil functioning.

Tica D, Udovic M, Lestan D.

Chemosphere. 2013 Mar;91(1):1-6. doi: 10.1016/j.chemosphere.2012.11.011. Epub 2012 Dec 6.

PMID:
23219407
[PubMed - indexed for MEDLINE]
20.

Metal immobilization and phosphorus leaching after stabilization of pyrite ash contaminated soil by phosphate amendments.

Zupančič M, Lavrič S, Bukovec P.

J Environ Monit. 2012 Feb;14(2):704-10. doi: 10.1039/c2em10798h. Epub 2012 Jan 12.

PMID:
22240857
[PubMed - indexed for MEDLINE]
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk