Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 191

Similar articles for PubMed (Select 23322646)

1.

Towards a metabolic engineering strain "commons": an Escherichia coli platform strain for ethanol production.

Woodruff LB, May BL, Warner JR, Gill RT.

Biotechnol Bioeng. 2013 May;110(5):1520-6. doi: 10.1002/bit.24840. Epub 2013 Jan 29.

PMID:
23322646
2.

Metabolic engineering of Escherichia coli for the production of fumaric acid.

Song CW, Kim DI, Choi S, Jang JW, Lee SY.

Biotechnol Bioeng. 2013 Jul;110(7):2025-34. doi: 10.1002/bit.24868. Epub 2013 Mar 1.

PMID:
23436277
3.

Engineering furfural tolerance in Escherichia coli improves the fermentation of lignocellulosic sugars into renewable chemicals.

Wang X, Yomano LP, Lee JY, York SW, Zheng H, Mullinnix MT, Shanmugam KT, Ingram LO.

Proc Natl Acad Sci U S A. 2013 Mar 5;110(10):4021-6. doi: 10.1073/pnas.1217958110. Epub 2013 Feb 19.

4.

Examining the feasibility of bulk commodity production in Escherichia coli.

Vickers CE, Klein-Marcuschamer D, Krömer JO.

Biotechnol Lett. 2012 Apr;34(4):585-96. doi: 10.1007/s10529-011-0821-3. Epub 2011 Dec 10. Review.

PMID:
22160295
5.

Biochemical, genetic, and metabolic engineering strategies to enhance coproduction of 1-propanol and ethanol in engineered Escherichia coli.

Srirangan K, Liu X, Westbrook A, Akawi L, Pyne ME, Moo-Young M, Chou CP.

Appl Microbiol Biotechnol. 2014 Nov;98(22):9499-515. doi: 10.1007/s00253-014-6093-9. Epub 2014 Oct 10. Erratum in: Appl Microbiol Biotechnol. 2014 Dec;98(23):9891-2.

PMID:
25301579
6.

Frontiers of yeast metabolic engineering: diversifying beyond ethanol and Saccharomyces.

Liu L, Redden H, Alper HS.

Curr Opin Biotechnol. 2013 Dec;24(6):1023-30. doi: 10.1016/j.copbio.2013.03.005. Epub 2013 Mar 28. Review.

PMID:
23541504
7.

Partial deletion of rng (RNase G)-enhanced homoethanol fermentation of xylose by the non-transgenic Escherichia coli RM10.

Manow R, Wang J, Wang Y, Zhao J, Garza E, Iverson A, Finan C, Grayburn S, Zhou S.

J Ind Microbiol Biotechnol. 2012 Jul;39(7):977-85. doi: 10.1007/s10295-012-1100-6. Epub 2012 Feb 29.

PMID:
22374228
8.

Succinate production in Escherichia coli.

Thakker C, Martínez I, San KY, Bennett GN.

Biotechnol J. 2012 Feb;7(2):213-24. doi: 10.1002/biot.201100061. Epub 2011 Sep 20. Review.

9.

Recent advances in the metabolic engineering of microorganisms for the production of 3-hydroxypropionic acid as C3 platform chemical.

Valdehuesa KN, Liu H, Nisola GM, Chung WJ, Lee SH, Park SJ.

Appl Microbiol Biotechnol. 2013 Apr;97(8):3309-21. doi: 10.1007/s00253-013-4802-4. Epub 2013 Mar 14. Review.

PMID:
23494623
10.

Laboratory metabolic evolution improves acetate tolerance and growth on acetate of ethanologenic Escherichia coli under non-aerated conditions in glucose-mineral medium.

Fernández-Sandoval MT, Huerta-Beristain G, Trujillo-Martinez B, Bustos P, González V, Bolivar F, Gosset G, Martinez A.

Appl Microbiol Biotechnol. 2012 Dec;96(5):1291-300. doi: 10.1007/s00253-012-4177-y. Epub 2012 Jun 6.

PMID:
22669633
11.

Toward a semisynthetic stress response system to engineer microbial solvent tolerance.

Zingaro KA, Papoutsakis ET.

MBio. 2012 Oct 2;3(5). pii: e00308-12. doi: 10.1128/mBio.00308-12. Print 2012.

12.

Enhanced production of N-acetyl-D-neuraminic acid by multi-approach whole-cell biocatalyst.

Lin BX, Zhang ZJ, Liu WF, Dong ZY, Tao Y.

Appl Microbiol Biotechnol. 2013 Jun;97(11):4775-84. doi: 10.1007/s00253-013-4754-8. Epub 2013 Feb 19.

PMID:
23420269
13.

Engineering strategy of yeast metabolism for higher alcohol production.

Matsuda F, Furusawa C, Kondo T, Ishii J, Shimizu H, Kondo A.

Microb Cell Fact. 2011 Sep 8;10:70. doi: 10.1186/1475-2859-10-70.

14.

Deriving metabolic engineering strategies from genome-scale modeling with flux ratio constraints.

Yen JY, Nazem-Bokaee H, Freedman BG, Athamneh AI, Senger RS.

Biotechnol J. 2013 May;8(5):581-94. doi: 10.1002/biot.201200234. Epub 2013 Apr 11.

PMID:
23460591
15.

Engineering a native homoethanol pathway in Escherichia coli B for ethanol production.

Zhou S, Iverson AG, Grayburn WS.

Biotechnol Lett. 2008 Feb;30(2):335-42. Epub 2007 Oct 24.

PMID:
17957344
16.

Metabolic engineering of Escherichia coli for the production of phenol from glucose.

Kim B, Park H, Na D, Lee SY.

Biotechnol J. 2014 May;9(5):621-9. doi: 10.1002/biot.201300263. Epub 2013 Oct 11.

PMID:
24115680
17.

Engineering of ethanolic E. coli with the Vitreoscilla hemoglobin gene enhances ethanol production from both glucose and xylose.

Sanny T, Arnaldos M, Kunkel SA, Pagilla KR, Stark BC.

Appl Microbiol Biotechnol. 2010 Nov;88(5):1103-12. doi: 10.1007/s00253-010-2817-7. Epub 2010 Aug 18.

PMID:
20717665
18.

Metabolic engineering of Escherichia coli for the production of putrescine: a four carbon diamine.

Qian ZG, Xia XX, Lee SY.

Biotechnol Bioeng. 2009 Nov 1;104(4):651-62. doi: 10.1002/bit.22502.

PMID:
19714672
19.

Metabolic engineering of Escherichia coli for efficient conversion of glycerol to ethanol.

Trinh CT, Srienc F.

Appl Environ Microbiol. 2009 Nov;75(21):6696-705. doi: 10.1128/AEM.00670-09. Epub 2009 Sep 4.

20.

Escherichia coli W as a new platform strain for the enhanced production of L-valine by systems metabolic engineering.

Park JH, Jang YS, Lee JW, Lee SY.

Biotechnol Bioeng. 2011 May;108(5):1140-7. doi: 10.1002/bit.23044. Epub 2011 Jan 25.

PMID:
21191998
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk