Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 116

1.

Minimization of thermodynamic costs in cancer cell invasion.

Liu L, Duclos G, Sun B, Lee J, Wu A, Kam Y, Sontag ED, Stone HA, Sturm JC, Gatenby RA, Austin RH.

Proc Natl Acad Sci U S A. 2013 Jan 29;110(5):1686-91. doi: 10.1073/pnas.1221147110. Epub 2013 Jan 14.

2.

Invading basement membrane matrix is sufficient for MDA-MB-231 breast cancer cells to develop a stable in vivo metastatic phenotype.

Abdelkarim M, Vintonenko N, Starzec A, Robles A, Aubert J, Martin ML, Mourah S, Podgorniak MP, Rodrigues-Ferreira S, Nahmias C, Couraud PO, Doliger C, Sainte-Catherine O, Peyri N, Chen L, Mariau J, Etienne M, Perret GY, Crepin M, Poyet JL, Khatib AM, Di Benedetto M.

PLoS One. 2011;6(8):e23334. doi: 10.1371/journal.pone.0023334. Epub 2011 Aug 15.

3.

CD44 enhances invasion of basal-like breast cancer cells by upregulating serine protease and collagen-degrading enzymatic expression and activity.

Montgomery N, Hill A, McFarlane S, Neisen J, O'Grady A, Conlon S, Jirstrom K, Kay EW, Waugh DJ.

Breast Cancer Res. 2012 May 23;14(3):R84.

4.

Human breast cancer cells activate procollagenase-1 and invade type I collagen: invasion is inhibited by all-trans retinoic acid.

Benbow U, Schoenermark MP, Orndorff KA, Givan AL, Brinckerhoff CE.

Clin Exp Metastasis. 1999 May;17(3):231-8.

PMID:
10432008
5.

FAP-overexpressing fibroblasts produce an extracellular matrix that enhances invasive velocity and directionality of pancreatic cancer cells.

Lee HO, Mullins SR, Franco-Barraza J, Valianou M, Cukierman E, Cheng JD.

BMC Cancer. 2011 Jun 13;11:245. doi: 10.1186/1471-2407-11-245.

6.

The phenotype of cancer cell invasion controlled by fibril diameter and pore size of 3D collagen networks.

Sapudom J, Rubner S, Martin S, Kurth T, Riedel S, Mierke CT, Pompe T.

Biomaterials. 2015 Jun;52:367-75. doi: 10.1016/j.biomaterials.2015.02.022. Epub 2015 Mar 3.

PMID:
25818443
7.

Microfabricated collagen tracks facilitate single cell metastatic invasion in 3D.

Kraning-Rush CM, Carey SP, Lampi MC, Reinhart-King CA.

Integr Biol (Camb). 2013 Mar;5(3):606-16. doi: 10.1039/c3ib20196a.

8.

A novel asymmetric 3D in-vitro assay for the study of tumor cell invasion.

Brekhman V, Neufeld G.

BMC Cancer. 2009 Nov 30;9:415. doi: 10.1186/1471-2407-9-415.

9.

Influence of a self-assembling peptide, RADA16, compared with collagen I and Matrigel on the malignant phenotype of human breast-cancer cells in 3D cultures and in vivo.

Mi K, Wang G, Liu Z, Feng Z, Huang B, Zhao X.

Macromol Biosci. 2009 May 13;9(5):437-43. doi: 10.1002/mabi.200800262.

PMID:
19165822
10.

Association of increased basement membrane invasiveness with absence of estrogen receptor and expression of vimentin in human breast cancer cell lines.

Thompson EW, Paik S, Brünner N, Sommers CL, Zugmaier G, Clarke R, Shima TB, Torri J, Donahue S, Lippman ME, et al.

J Cell Physiol. 1992 Mar;150(3):534-44.

PMID:
1537883
11.

Up-regulation of METCAM/MUC18 promotes motility, invasion, and tumorigenesis of human breast cancer cells.

Zeng GF, Cai SX, Wu GJ.

BMC Cancer. 2011 Mar 30;11:113. doi: 10.1186/1471-2407-11-113.

12.

Staged stromal extracellular 3D matrices differentially regulate breast cancer cell responses through PI3K and beta1-integrins.

Castelló-Cros R, Khan DR, Simons J, Valianou M, Cukierman E.

BMC Cancer. 2009 Mar 26;9:94. doi: 10.1186/1471-2407-9-94.

13.

Cell adhesion molecule uvomorulin expression in human breast cancer cell lines: relationship to morphology and invasive capacities.

Sommers CL, Thompson EW, Torri JA, Kemler R, Gelmann EP, Byers SW.

Cell Growth Differ. 1991 Aug;2(8):365-72.

14.

Rac3 induces a molecular pathway triggering breast cancer cell aggressiveness: differences in MDA-MB-231 and MCF-7 breast cancer cell lines.

Gest C, Joimel U, Huang L, Pritchard LL, Petit A, Dulong C, Buquet C, Hu CQ, Mirshahi P, Laurent M, Fauvel-Lafève F, Cazin L, Vannier JP, Lu H, Soria J, Li H, Varin R, Soria C.

BMC Cancer. 2013 Feb 6;13:63. doi: 10.1186/1471-2407-13-63.

15.

In vitro irradiation of basement membrane enhances the invasiveness of breast cancer cells.

Paquette B, Baptiste C, Therriault H, Arguin G, Plouffe B, Lemay R.

Br J Cancer. 2007 Dec 3;97(11):1505-12. Epub 2007 Nov 6.

16.

Demethoxycurcumin suppresses migration and invasion of MDA-MB-231 human breast cancer cell line.

Yodkeeree S, Ampasavate C, Sung B, Aggarwal BB, Limtrakul P.

Eur J Pharmacol. 2010 Feb 10;627(1-3):8-15. doi: 10.1016/j.ejphar.2009.09.052. Epub 2009 Oct 7.

PMID:
19818349
17.

Differential effects of EGF gradient profiles on MDA-MB-231 breast cancer cell chemotaxis.

Wang SJ, Saadi W, Lin F, Minh-Canh Nguyen C, Li Jeon N.

Exp Cell Res. 2004 Oct 15;300(1):180-9.

PMID:
15383325
18.

Lack of telopeptides in fibrillar collagen I promotes the invasion of a metastatic breast tumor cell line.

Demou ZN, Awad M, McKee T, Perentes JY, Wang X, Munn LL, Jain RK, Boucher Y.

Cancer Res. 2005 Jul 1;65(13):5674-82.

19.

Suppression of growth, migration and invasion of highly-metastatic human breast cancer cells by berbamine and its molecular mechanisms of action.

Wang S, Liu Q, Zhang Y, Liu K, Yu P, Liu K, Luan J, Duan H, Lu Z, Wang F, Wu E, Yagasaki K, Zhang G.

Mol Cancer. 2009 Oct 1;8:81. doi: 10.1186/1476-4598-8-81.

20.

3D Traction forces in cancer cell invasion.

Koch TM, Münster S, Bonakdar N, Butler JP, Fabry B.

PLoS One. 2012;7(3):e33476. doi: 10.1371/journal.pone.0033476. Epub 2012 Mar 30.

Items per page

Supplemental Content

Write to the Help Desk