Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 134

1.

Hydrogen-driven asymmetric reduction of hydroxyacetone to (R)-1,2-propanediol by Ralstonia eutropha transformant expressing alcohol dehydrogenase from Kluyveromyces lactis.

Oda T, Oda K, Yamamoto H, Matsuyama A, Ishii M, Igarashi Y, Nishihara H.

Microb Cell Fact. 2013 Jan 10;12(1):2. doi: 10.1186/1475-2859-12-2.

2.

Expression of a functional NAD-reducing [NiFe] hydrogenase from the gram-positive Rhodococcus opacus in the gram-negative Ralstonia eutropha.

Porthun A, Bernhard M, Friedrich B.

Arch Microbiol. 2002 Feb;177(2):159-66. Epub 2001 Nov 20.

PMID:
11807565
3.

Coupling of permeabilized cells of Gluconobacter oxydans and Ralstonia eutropha for asymmetric ketone reduction using H2 as reductant.

Rundbäck F, Fidanoska M, Adlercreutz P.

J Biotechnol. 2012 Jan;157(1):154-8. doi: 10.1016/j.jbiotec.2011.09.029. Epub 2011 Oct 5.

PMID:
22001848
4.

[NiFe]-hydrogenases of Ralstonia eutropha H16: modular enzymes for oxygen-tolerant biological hydrogen oxidation.

Burgdorf T, Lenz O, Buhrke T, van der Linden E, Jones AK, Albracht SP, Friedrich B.

J Mol Microbiol Biotechnol. 2005;10(2-4):181-96. Review.

PMID:
16645314
5.

H₂-driven cofactor regeneration with NAD(P)⁺-reducing hydrogenases.

Lauterbach L, Lenz O, Vincent KA.

FEBS J. 2013 Jul;280(13):3058-68. doi: 10.1111/febs.12245. Epub 2013 Apr 17. Review.

6.

Selective release and function of one of the two FMN groups in the cytoplasmic NAD+-reducing [NiFe]-hydrogenase from Ralstonia eutropha.

van der Linden E, Faber BW, Bleijlevens B, Burgdorf T, Bernhard M, Friedrich B, Albracht SP.

Eur J Biochem. 2004 Feb;271(4):801-8.

PMID:
14764097
7.

NAD(H)-coupled hydrogen cycling - structure-function relationships of bidirectional [NiFe] hydrogenases.

Horch M, Lauterbach L, Lenz O, Hildebrandt P, Zebger I.

FEBS Lett. 2012 Mar 9;586(5):545-56. doi: 10.1016/j.febslet.2011.10.010. Epub 2011 Nov 2. Review.

8.

Cupriavidus necator JMP134 rapidly reduces furfural with a Zn-dependent alcohol dehydrogenase.

Li Q, Metthew Lam LK, Xun L.

Biodegradation. 2011 Nov;22(6):1215-25. doi: 10.1007/s10532-011-9476-y. Epub 2011 Apr 28.

PMID:
21526390
9.

H2 conversion in the presence of O2 as performed by the membrane-bound [NiFe]-hydrogenase of Ralstonia eutropha.

Lenz O, Ludwig M, Schubert T, Bürstel I, Ganskow S, Goris T, Schwarze A, Friedrich B.

Chemphyschem. 2010 Apr 26;11(6):1107-19. doi: 10.1002/cphc.200901002. Review.

PMID:
20186906
10.

An analysis of the changes in soluble hydrogenase and global gene expression in Cupriavidus necator (Ralstonia eutropha) H16 grown in heterotrophic diauxic batch culture.

Jugder BE, Chen Z, Ping DT, Lebhar H, Welch J, Marquis CP.

Microb Cell Fact. 2015 Mar 25;14:42. doi: 10.1186/s12934-015-0226-4.

11.

Catalytic properties of the isolated diaphorase fragment of the NAD-reducing [NiFe]-hydrogenase from Ralstonia eutropha.

Lauterbach L, Idris Z, Vincent KA, Lenz O.

PLoS One. 2011;6(10):e25939. doi: 10.1371/journal.pone.0025939. Epub 2011 Oct 10.

12.

Use of a reverse micelle system for study of oligomeric structure of NAD+-reducing hydrogenase from Ralstonia eutropha H16.

Tikhonova TV, Kurkin SA, Klyachko NL, Popov VO.

Biochemistry (Mosc). 2005 Jun;70(6):645-51.

PMID:
16038606
13.

The H(2) sensor of Ralstonia eutropha is a member of the subclass of regulatory [NiFe] hydrogenases.

Kleihues L, Lenz O, Bernhard M, Buhrke T, Friedrich B.

J Bacteriol. 2000 May;182(10):2716-24.

14.

Biochemical characterization of ethanol-dependent reduction of furfural by alcohol dehydrogenases.

Li Q, Metthew Lam LK, Xun L.

Biodegradation. 2011 Nov;22(6):1227-37. doi: 10.1007/s10532-011-9477-x. Epub 2011 Apr 28.

PMID:
21526389
15.

Enantioselective reduction of carbonyl compounds by whole-cell biotransformation, combining a formate dehydrogenase and a (R)-specific alcohol dehydrogenase.

Ernst M, Kaup B, Müller M, Bringer-Meyer S, Sahm H.

Appl Microbiol Biotechnol. 2005 Mar;66(6):629-34. Epub 2004 Nov 12.

PMID:
15549291
16.

Furfural reduction mechanism of a zinc-dependent alcohol dehydrogenase from Cupriavidus necator JMP134.

Kang C, Hayes R, Sanchez EJ, Webb BN, Li Q, Hooper T, Nissen MS, Xun L.

Mol Microbiol. 2012 Jan;83(1):85-95. doi: 10.1111/j.1365-2958.2011.07914.x. Epub 2011 Nov 20.

17.

Structural and oxidation-state changes at its nonstandard Ni-Fe site during activation of the NAD-reducing hydrogenase from Ralstonia eutropha detected by X-ray absorption, EPR, and FTIR spectroscopy.

Burgdorf T, Löscher S, Liebisch P, Van der Linden E, Galander M, Lendzian F, Meyer-Klaucke W, Albracht SP, Friedrich B, Dau H, Haumann M.

J Am Chem Soc. 2005 Jan 19;127(2):576-92.

PMID:
15643882
18.
19.
20.

Potential of some yeast strains in the stereoselective synthesis of (R)-(-)-phenylacetylcarbinol and (S)-(+)-phenylacetylcarbinol and their reduced 1,2-dialcohol derivatives.

Andreu C, Del Olmo ML.

Appl Microbiol Biotechnol. 2014 Jul;98(13):5901-13. doi: 10.1007/s00253-014-5635-5. Epub 2014 Mar 27.

PMID:
24671162
Items per page

Supplemental Content

Write to the Help Desk