Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 171

Similar articles for PubMed (Select 23303585)

1.

A reversible redox strategy for SWCNT-based supercapacitors using a high-performance electrolyte.

Yu H, Wu J, Lin J, Fan L, Huang M, Lin Y, Li Y, Yu F, Qiu Z.

Chemphyschem. 2013 Feb 4;14(2):394-9. doi: 10.1002/cphc.201200816. Epub 2013 Jan 9.

PMID:
23303585
2.

Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density.

Cheng Q, Tang J, Ma J, Zhang H, Shinya N, Qin LC.

Phys Chem Chem Phys. 2011 Oct 21;13(39):17615-24. doi: 10.1039/c1cp21910c. Epub 2011 Sep 1.

PMID:
21887427
3.

Incorporation of MnO2-coated carbon nanotubes between graphene sheets as supercapacitor electrode.

Lei Z, Shi F, Lu L.

ACS Appl Mater Interfaces. 2012 Feb;4(2):1058-64. doi: 10.1021/am2016848. Epub 2012 Feb 6.

PMID:
22264121
4.

A novel SWCNT-polyoxometalate nanohybrid material as an electrode for electrochemical supercapacitors.

Chen HY, Al-Oweini R, Friedl J, Lee CY, Li L, Kortz U, Stimming U, Srinivasan M.

Nanoscale. 2015 Apr 13. [Epub ahead of print]

PMID:
25866193
5.

Exploring aligned-carbon-nanotubes@polyaniline arrays on household Al as supercapacitors.

Huang F, Lou F, Chen D.

ChemSusChem. 2012 May;5(5):888-95. doi: 10.1002/cssc.201100553. Epub 2012 Mar 12.

PMID:
22411903
6.

High performance solid-state electric double layer capacitor from redox mediated gel polymer electrolyte and renewable tamarind fruit shell derived porous carbon.

Senthilkumar ST, Selvan RK, Melo JS, Sanjeeviraja C.

ACS Appl Mater Interfaces. 2013 Nov 13;5(21):10541-50. doi: 10.1021/am402162b. Epub 2013 Oct 28.

PMID:
24164312
7.

Effect of temperature on the capacitance of carbon nanotube supercapacitors.

Masarapu C, Zeng HF, Hung KH, Wei B.

ACS Nano. 2009 Aug 25;3(8):2199-206. doi: 10.1021/nn900500n.

PMID:
19583250
8.

Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors.

Chen LF, Zhang XD, Liang HW, Kong M, Guan QF, Chen P, Wu ZY, Yu SH.

ACS Nano. 2012 Aug 28;6(8):7092-102. doi: 10.1021/nn302147s. Epub 2012 Jul 16.

PMID:
22769051
9.

High-speed carbon nanotube actuators based on an oxidation/reduction reaction.

Mukai K, Asaka K, Hata K, Otero TF, Oike H.

Chemistry. 2011 Sep 19;17(39):10965-71. doi: 10.1002/chem.201003641. Epub 2011 Aug 8.

PMID:
21826748
10.

A green and high energy density asymmetric supercapacitor based on ultrathin MnO2 nanostructures and functional mesoporous carbon nanotube electrodes.

Jiang H, Li C, Sun T, Ma J.

Nanoscale. 2012 Feb 7;4(3):807-12. doi: 10.1039/c1nr11542a. Epub 2011 Dec 12.

PMID:
22159343
11.

High-performance supercapacitors based on vertically aligned carbon nanotubes and nonaqueous electrolytes.

Kim B, Chung H, Kim W.

Nanotechnology. 2012 Apr 20;23(15):155401. doi: 10.1088/0957-4484/23/15/155401. Epub 2012 Mar 22.

PMID:
22437007
12.

Influence of redox molecules on the electronic conductance of single-walled carbon nanotube field-effect transistors: application to chemical and biological sensing.

Boussaad S, Diner BA, Fan J.

J Am Chem Soc. 2008 Mar 26;130(12):3780-7. doi: 10.1021/ja075131f. Epub 2008 Mar 6.

PMID:
18321094
13.

All-solid-state flexible supercapacitors based on papers coated with carbon nanotubes and ionic-liquid-based gel electrolytes.

Kang YJ, Chung H, Han CH, Kim W.

Nanotechnology. 2012 Feb 17;23(6):065401. doi: 10.1088/0957-4484/23/6/065401. Epub 2012 Jan 17. Erratum in: Nanotechnology. 2012 Jul 20;23(28):289501.

PMID:
22248712
14.

Synthesis of chemically bonded graphene/carbon nanotube composites and their application in large volumetric capacitance supercapacitors.

Jung N, Kwon S, Lee D, Yoon DM, Park YM, Benayad A, Choi JY, Park JS.

Adv Mater. 2013 Dec 17;25(47):6854-8. doi: 10.1002/adma.201302788. Epub 2013 Sep 19.

PMID:
24105733
15.

Flexible all-solid-state asymmetric supercapacitors based on free-standing carbon nanotube/graphene and Mn3O4 nanoparticle/graphene paper electrodes.

Gao H, Xiao F, Ching CB, Duan H.

ACS Appl Mater Interfaces. 2012 Dec;4(12):7020-6. doi: 10.1021/am302280b. Epub 2012 Nov 29.

PMID:
23167563
16.

Performance of SLS/MWCNTs/PANI capacitor electrodes in a physiological electrolyte and in serum.

Ammam M, Fransaer J.

Chem Commun (Camb). 2012 Feb 14;48(14):2036-8. doi: 10.1039/c2cc17122h. Epub 2012 Jan 11.

PMID:
22237451
17.

Printable thin film supercapacitors using single-walled carbon nanotubes.

Kaempgen M, Chan CK, Ma J, Cui Y, Gruner G.

Nano Lett. 2009 May;9(5):1872-6. doi: 10.1021/nl8038579.

PMID:
19348455
18.

Flexible polyester cellulose paper supercapacitor with a gel electrolyte.

Karthika P, Rajalakshmi N, Dhathathreyan KS.

Chemphyschem. 2013 Nov 11;14(16):3822-6. doi: 10.1002/cphc.201300622. Epub 2013 Oct 23.

PMID:
24155269
19.

Synergistic fusion of vertical graphene nanosheets and carbon nanotubes for high-performance supercapacitor electrodes.

Seo DH, Yick S, Han ZJ, Fang JH, Ostrikov KK.

ChemSusChem. 2014 Aug;7(8):2317-24. doi: 10.1002/cssc.201402045. Epub 2014 May 14.

PMID:
24828784
20.

Synergistic interaction between redox-active electrolyte and binder-free functionalized carbon for ultrahigh supercapacitor performance.

Mai LQ, Minhas-Khan A, Tian X, Hercule KM, Zhao YL, Lin X, Xu X.

Nat Commun. 2013;4:2923. doi: 10.1038/ncomms3923.

PMID:
24327172
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk