Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 195

Similar articles for PubMed (Select 23299336)

1.

Verification at the protein level of the PIF4-mediated external coincidence model for the temperature-adaptive photoperiodic control of plant growth in Arabidopsis thaliana.

Yamashino T, Nomoto Y, Lorrain S, Miyachi M, Ito S, Nakamichi N, Fankhauser C, Mizuno T.

Plant Signal Behav. 2013 Mar;8(3):e23390. doi: 10.4161/psb.23390. Epub 2013 Jan 8.

2.

A circadian clock- and PIF4-mediated double coincidence mechanism is implicated in the thermosensitive photoperiodic control of plant architectures in Arabidopsis thaliana.

Nomoto Y, Kubozono S, Miyachi M, Yamashino T, Nakamichi N, Mizuno T.

Plant Cell Physiol. 2012 Nov;53(11):1965-73. doi: 10.1093/pcp/pcs141. Epub 2012 Oct 4. Erratum in: Plant Cell Physiol. 2013 Apr;54(4):643. Nomoto, Yuichi [corrected to Nomoto, Yuji].

PMID:
23037004
3.

Circadian clock- and PIF4-controlled plant growth: a coincidence mechanism directly integrates a hormone signaling network into the photoperiodic control of plant architectures in Arabidopsis thaliana.

Nomoto Y, Kubozono S, Yamashino T, Nakamichi N, Mizuno T.

Plant Cell Physiol. 2012 Nov;53(11):1950-64. doi: 10.1093/pcp/pcs137. Epub 2012 Oct 4. Erratum in: Plant Cell Physiol. 2013 Apr;54(4):643. Nomoto, Yuichi [corrected to Nomoto, Yuji].

PMID:
23037003
4.

Phytochrome-interacting factor 4 and 5 (PIF4 and PIF5) activate the homeobox ATHB2 and auxin-inducible IAA29 genes in the coincidence mechanism underlying photoperiodic control of plant growth of Arabidopsis thaliana.

Kunihiro A, Yamashino T, Nakamichi N, Niwa Y, Nakanishi H, Mizuno T.

Plant Cell Physiol. 2011 Aug;52(8):1315-29. doi: 10.1093/pcp/pcr076. Epub 2011 Jun 11.

PMID:
21666227
5.

Circadian clock and PIF4-mediated external coincidence mechanism coordinately integrates both of the cues from seasonal changes in photoperiod and temperature to regulate plant growth in Arabidopsis thaliana.

Nomoto Y, Kubozono S, Miyachi M, Yamashino T, Nakamichi N, Mizuno T.

Plant Signal Behav. 2013 Feb;8(2):e22863. doi: 10.4161/psb.22863. Epub 2012 Nov 15.

7.

Phytochrome-imposed oscillations in PIF3 protein abundance regulate hypocotyl growth under diurnal light/dark conditions in Arabidopsis.

Soy J, Leivar P, González-Schain N, Sentandreu M, Prat S, Quail PH, Monte E.

Plant J. 2012 Aug;71(3):390-401. doi: 10.1111/j.1365-313X.2012.04992.x. Epub 2012 Jun 11.

8.

The circadian clock regulates the photoperiodic response of hypocotyl elongation through a coincidence mechanism in Arabidopsis thaliana.

Niwa Y, Yamashino T, Mizuno T.

Plant Cell Physiol. 2009 Apr;50(4):838-54. doi: 10.1093/pcp/pcp028. Epub 2009 Feb 20.

PMID:
19233867
9.

PIF1 promotes phytochrome-regulated growth under photoperiodic conditions in Arabidopsis together with PIF3, PIF4, and PIF5.

Soy J, Leivar P, Monte E.

J Exp Bot. 2014 Jun;65(11):2925-36. doi: 10.1093/jxb/ert465. Epub 2014 Jan 13.

10.
12.

The Arabidopsis phytochrome-interacting factor PIF7, together with PIF3 and PIF4, regulates responses to prolonged red light by modulating phyB levels.

Leivar P, Monte E, Al-Sady B, Carle C, Storer A, Alonso JM, Ecker JR, Quail PH.

Plant Cell. 2008 Feb;20(2):337-52. doi: 10.1105/tpc.107.052142. Epub 2008 Feb 5.

13.

The time of day effects of warm temperature on flowering time involve PIF4 and PIF5.

Thines BC, Youn Y, Duarte MI, Harmon FG.

J Exp Bot. 2014 Mar;65(4):1141-51. doi: 10.1093/jxb/ert487.

14.

Phytochrome-interacting factor 4 (PIF4) regulates auxin biosynthesis at high temperature.

Franklin KA, Lee SH, Patel D, Kumar SV, Spartz AK, Gu C, Ye S, Yu P, Breen G, Cohen JD, Wigge PA, Gray WM.

Proc Natl Acad Sci U S A. 2011 Dec 13;108(50):20231-5. doi: 10.1073/pnas.1110682108. Epub 2011 Nov 28.

15.

A novel molecular recognition motif necessary for targeting photoactivated phytochrome signaling to specific basic helix-loop-helix transcription factors.

Khanna R, Huq E, Kikis EA, Al-Sady B, Lanzatella C, Quail PH.

Plant Cell. 2004 Nov;16(11):3033-44. Epub 2004 Oct 14.

16.

A Link between circadian-controlled bHLH factors and the APRR1/TOC1 quintet in Arabidopsis thaliana.

Yamashino T, Matsushika A, Fujimori T, Sato S, Kato T, Tabata S, Mizuno T.

Plant Cell Physiol. 2003 Jun;44(6):619-29.

PMID:
12826627
17.

Ambient temperature signal feeds into the circadian clock transcriptional circuitry through the EC night-time repressor in Arabidopsis thaliana.

Mizuno T, Nomoto Y, Oka H, Kitayama M, Takeuchi A, Tsubouchi M, Yamashino T.

Plant Cell Physiol. 2014 May;55(5):958-76. doi: 10.1093/pcp/pcu030. Epub 2014 Feb 4.

PMID:
24500967
18.

High temperature-mediated adaptations in plant architecture require the bHLH transcription factor PIF4.

Koini MA, Alvey L, Allen T, Tilley CA, Harberd NP, Whitelam GC, Franklin KA.

Curr Biol. 2009 Mar 10;19(5):408-13. doi: 10.1016/j.cub.2009.01.046. Epub 2009 Feb 26.

19.

Phytochrome-mediated inhibition of shade avoidance involves degradation of growth-promoting bHLH transcription factors.

Lorrain S, Allen T, Duek PD, Whitelam GC, Fankhauser C.

Plant J. 2008 Jan;53(2):312-23. Epub 2007 Nov 28.

PMID:
18047474
20.

Phytochrome signaling in green Arabidopsis seedlings: impact assessment of a mutually negative phyB-PIF feedback loop.

Leivar P, Monte E, Cohn MM, Quail PH.

Mol Plant. 2012 May;5(3):734-49. doi: 10.1093/mp/sss031. Epub 2012 Apr 5.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk