Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 108

1.

[Overexpression of Corynebacterium glutamicum NAD kinase improves L-isoleucine biosynthesis].

Huan X, Li K, Shi F, Wang X.

Sheng Wu Gong Cheng Xue Bao. 2012 Sep;28(9):1038-47. Chinese.

PMID:
23289306
[PubMed - indexed for MEDLINE]
2.

Expression of NAD(H) kinase and glucose-6-phosphate dehydrogenase improve NADPH supply and L-isoleucine biosynthesis in Corynebacterium glutamicum ssp. lactofermentum.

Shi F, Li K, Huan X, Wang X.

Appl Biochem Biotechnol. 2013 Sep;171(2):504-21. doi: 10.1007/s12010-013-0389-6. Epub 2013 Jul 19.

PMID:
23868449
[PubMed - indexed for MEDLINE]
3.

Overexpression of NAD kinases improves the L-isoleucine biosynthesis in Corynebacterium glutamicum ssp. lactofermentum.

Shi F, Huan X, Wang X, Ning J.

Enzyme Microb Technol. 2012 Jul 15;51(2):73-80. doi: 10.1016/j.enzmictec.2012.04.003. Epub 2012 Apr 21.

PMID:
22664190
[PubMed - indexed for MEDLINE]
4.

Comparative proteome analysis of global effect of POS5 and zwf-ppnK overexpression in L-isoleucine producing Corynebacterium glutamicum ssp. lactofermentum.

Shi F, Li K, Li Y.

Biotechnol Lett. 2015 Feb 4. [Epub ahead of print]

PMID:
25650341
[PubMed - as supplied by publisher]
5.

Increasing l-isoleucine production in Corynebacterium glutamicum by overexpressing global regulator Lrp and two-component export system BrnFE.

Yin L, Shi F, Hu X, Chen C, Wang X.

J Appl Microbiol. 2013 May;114(5):1369-77. doi: 10.1111/jam.12141. Epub 2013 Feb 8.

PMID:
23331988
[PubMed - indexed for MEDLINE]
6.

Polyphosphate/ATP-dependent NAD kinase of Corynebacterium glutamicum: biochemical properties and impact of ppnK overexpression on lysine production.

Lindner SN, Niederholtmeyer H, Schmitz K, Schoberth SM, Wendisch VF.

Appl Microbiol Biotechnol. 2010 Jun;87(2):583-93. doi: 10.1007/s00253-010-2481-y. Epub 2010 Feb 24.

PMID:
20180116
[PubMed - indexed for MEDLINE]
7.

Metabolic engineering of Corynebacterium glutamicum for increasing the production of L-ornithine by increasing NADPH availability.

Jiang LY, Zhang YY, Li Z, Liu JZ.

J Ind Microbiol Biotechnol. 2013 Oct;40(10):1143-51. doi: 10.1007/s10295-013-1306-2. Epub 2013 Jul 9.

PMID:
23836141
[PubMed - indexed for MEDLINE]
8.

Co-expression of feedback-resistant threonine dehydratase and acetohydroxy acid synthase increase L-isoleucine production in Corynebacterium glutamicum.

Yin L, Hu X, Xu D, Ning J, Chen J, Wang X.

Metab Eng. 2012 Sep;14(5):542-50. doi: 10.1016/j.ymben.2012.06.002. Epub 2012 Jul 4.

PMID:
22771937
[PubMed - indexed for MEDLINE]
9.

Implication of gluconate kinase activity in L-ornithine biosynthesis in Corynebacterium glutamicum.

Hwang GH, Cho JY.

J Ind Microbiol Biotechnol. 2012 Dec;39(12):1869-74. doi: 10.1007/s10295-012-1197-7. Epub 2012 Sep 18.

PMID:
22987028
[PubMed - indexed for MEDLINE]
10.

Molecular properties, functions, and potential applications of NAD kinases.

Shi F, Li Y, Li Y, Wang X.

Acta Biochim Biophys Sin (Shanghai). 2009 May;41(5):352-61. Review.

PMID:
19430699
[PubMed - indexed for MEDLINE]
Free Article
11.

Improvement of the redox balance increases L-valine production by Corynebacterium glutamicum under oxygen deprivation conditions.

Hasegawa S, Uematsu K, Natsuma Y, Suda M, Hiraga K, Jojima T, Inui M, Yukawa H.

Appl Environ Microbiol. 2012 Feb;78(3):865-75. doi: 10.1128/AEM.07056-11. Epub 2011 Dec 2.

PMID:
22138982
[PubMed - indexed for MEDLINE]
Free PMC Article
12.

(L)-Valine production with minimization of by-products' synthesis in Corynebacterium glutamicum and Brevibacterium flavum.

Hou X, Chen X, Zhang Y, Qian H, Zhang W.

Amino Acids. 2012 Dec;43(6):2301-11. doi: 10.1007/s00726-012-1308-9. Epub 2012 May 3.

PMID:
22552525
[PubMed - indexed for MEDLINE]
13.

Enhancing (L)-isoleucine production by thrABC overexpression combined with alaT deletion in Corynebacterium glutamicum.

Wang J, Wen B, Wang J, Xu Q, Zhang C, Chen N, Xie X.

Appl Biochem Biotechnol. 2013 Sep;171(1):20-30. doi: 10.1007/s12010-013-0321-0. Epub 2013 Jun 30.

PMID:
23813403
[PubMed - indexed for MEDLINE]
14.

Synthesis of γ-aminobutyric acid by expressing Lactobacillus brevis-derived glutamate decarboxylase in the Corynebacterium glutamicum strain ATCC 13032.

Shi F, Li Y.

Biotechnol Lett. 2011 Dec;33(12):2469-74. doi: 10.1007/s10529-011-0723-4. Epub 2011 Aug 9.

PMID:
21826397
[PubMed - indexed for MEDLINE]
15.

Allosteric regulation of Bacillus subtilis NAD kinase by quinolinic acid.

Garavaglia S, Galizzi A, Rizzi M.

J Bacteriol. 2003 Aug;185(16):4844-50.

PMID:
12897004
[PubMed - indexed for MEDLINE]
Free PMC Article
16.

Molecular aspects of lysine, threonine, and isoleucine biosynthesis in Corynebacterium glutamicum.

Eikmanns BJ, Eggeling L, Sahm H.

Antonie Van Leeuwenhoek. 1993-1994;64(2):145-63. Review.

PMID:
8092856
[PubMed - indexed for MEDLINE]
17.

Thymidine production by overexpressing NAD+ kinase in an Escherichia coli recombinant strain.

Lee HC, Kim JS, Jang W, Kim SY.

Biotechnol Lett. 2009 Dec;31(12):1929-36. doi: 10.1007/s10529-009-0097-z.

PMID:
19774345
[PubMed - indexed for MEDLINE]
18.

Construction of L-lysine-, L-threonine-, and L-isoleucine-overproducing strains of Corynebacterium glutamicum.

Sahm H, Eggeling L, Eikmanns B, Krämer R.

Ann N Y Acad Sci. 1996 May 15;782:25-39. Review.

PMID:
8659901
[PubMed - indexed for MEDLINE]
19.

Biochemical and functional characterization of novel NADH kinase in the enteric protozoan parasite Entamoeba histolytica.

Jeelani G, Husain A, Sato D, Soga T, Suematsu M, Nozaki T.

Biochimie. 2013 Feb;95(2):309-19. doi: 10.1016/j.biochi.2012.09.034. Epub 2012 Oct 13.

PMID:
23069387
[PubMed - indexed for MEDLINE]
20.

Metabolic evolution of Corynebacterium glutamicum for increased production of L-ornithine.

Jiang LY, Chen SG, Zhang YY, Liu JZ.

BMC Biotechnol. 2013 Jun 1;13:47. doi: 10.1186/1472-6750-13-47.

PMID:
23725060
[PubMed - indexed for MEDLINE]
Free PMC Article
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk