Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 112

1.

Ion correlations in nanofluidic channels: effects of ion size, valence, and concentration on voltage- and pressure-driven currents.

Hoffmann J, Gillespie D.

Langmuir. 2013 Jan 29;29(4):1303-17. doi: 10.1021/la304032t. Epub 2013 Jan 15.

3.

Efficiently accounting for ion correlations in electrokinetic nanofluidic devices using density functional theory.

Gillespie D, Khair AS, Bardhan JP, Pennathur S.

J Colloid Interface Sci. 2011 Jul 15;359(2):520-9. doi: 10.1016/j.jcis.2011.03.088. Epub 2011 Apr 2.

PMID:
21531429
4.

Energy variational analysis of ions in water and channels: Field theory for primitive models of complex ionic fluids.

Eisenberg B, Hyon Y, Liu C.

J Chem Phys. 2010 Sep 14;133(10):104104. doi: 10.1063/1.3476262.

5.

Negative surface charge near sodium channels of nerve: divalent ions, monovalent ions, and pH.

Hille B, Woodhull AM, Shapiro BI.

Philos Trans R Soc Lond B Biol Sci. 1975 Jun 10;270(908):301-18.

PMID:
238230
6.

Effect of multivalent ions on electroosmotic flow in micro- and nanochannels.

Zheng Z, Hansford DJ, Conlisk AT.

Electrophoresis. 2003 Sep;24(17):3006-17.

PMID:
12973804
7.
8.

Competition among Ca2+, Mg2+, and Na+ for model ion channel selectivity filters: determinants of ion selectivity.

Dudev T, Lim C.

J Phys Chem B. 2012 Sep 6;116(35):10703-14. doi: 10.1021/jp304925a. Epub 2012 Aug 23.

PMID:
22889116
9.

Tuning transport properties of nanofluidic devices with local charge inversion.

He Y, Gillespie D, Boda D, Vlassiouk I, Eisenberg RS, Siwy ZS.

J Am Chem Soc. 2009 Apr 15;131(14):5194-202. doi: 10.1021/ja808717u.

10.

Solute separation in nanofluidic channels: pressure-driven or electric field-driven?

Xuan X, Li D.

Electrophoresis. 2007 Feb;28(4):627-34.

PMID:
17304496
11.
12.

High energy conversion efficiency in nanofluidic channels.

Gillespie D.

Nano Lett. 2012 Mar 14;12(3):1410-6. doi: 10.1021/nl204087f. Epub 2012 Feb 7.

PMID:
22300476
13.

The effect of protein dielectric coefficient on the ionic selectivity of a calcium channel.

Boda D, Valiskó M, Eisenberg B, Nonner W, Henderson D, Gillespie D.

J Chem Phys. 2006 Jul 21;125(3):34901.

PMID:
16863379
14.

Asymmetric ion transport through ion-channel-mimetic solid-state nanopores.

Guo W, Tian Y, Jiang L.

Acc Chem Res. 2013 Dec 17;46(12):2834-46. doi: 10.1021/ar400024p. Epub 2013 May 28. Review.

PMID:
23713693
16.

Charge regulation in nanopore ionic field-effect transistors.

Jiang Z, Stein D.

Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Mar;83(3 Pt 1):031203. Epub 2011 Mar 18.

PMID:
21517487
17.
18.

pH-tunable ion selectivity in carbon nanotube pores.

Fornasiero F, In JB, Kim S, Park HG, Wang Y, Grigoropoulos CP, Noy A, Bakajin O.

Langmuir. 2010 Sep 21;26(18):14848-53. doi: 10.1021/la101943h.

PMID:
20715879
19.

Charge renormalization and inversion of a highly charged lipid bilayer: effects of dielectric discontinuities and charge correlations.

Taheri-Araghi S, Ha BY.

Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Aug;72(2 Pt 1):021508. Epub 2005 Aug 19.

PMID:
16196574
20.

Power generation by pressure-driven transport of ions in nanofluidic channels.

van der Heyden FH, Bonthuis DJ, Stein D, Meyer C, Dekker C.

Nano Lett. 2007 Apr;7(4):1022-5. Epub 2007 Mar 13.

PMID:
17352506
Items per page

Supplemental Content

Write to the Help Desk