Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 252

1.

Imprintable, bendable, and shape-conformable polymer electrolytes for versatile-shaped lithium-ion batteries.

Kil EH, Choi KH, Ha HJ, Xu S, Rogers JA, Kim MR, Lee YG, Kim KM, Cho KY, Lee SY.

Adv Mater. 2013 Mar 13;25(10):1395-400. doi: 10.1002/adma.201204182. Epub 2012 Dec 21.

PMID:
23280571
2.

Single-ion polymer electrolyte membranes enable lithium-ion batteries with a broad operating temperature range.

Cai W, Zhang Y, Li J, Sun Y, Cheng H.

ChemSusChem. 2014 Apr;7(4):1063-7. doi: 10.1002/cssc.201301373. Epub 2014 Mar 12.

PMID:
24623577
3.

Printable Solid-State Lithium-Ion Batteries: A New Route toward Shape-Conformable Power Sources with Aesthetic Versatility for Flexible Electronics.

Kim SH, Choi KH, Cho SJ, Choi S, Park S, Lee SY.

Nano Lett. 2015 Aug 12;15(8):5168-77. doi: 10.1021/acs.nanolett.5b01394. Epub 2015 Jul 21.

PMID:
26176939
4.

Quasi-solid-state rechargeable lithium-ion batteries with a calix[4]quinone cathode and gel polymer electrolyte.

Huang W, Zhu Z, Wang L, Wang S, Li H, Tao Z, Shi J, Guan L, Chen J.

Angew Chem Int Ed Engl. 2013 Aug 26;52(35):9162-6. doi: 10.1002/anie.201302586. Epub 2013 Jul 3. No abstract available.

PMID:
23825051
5.

Enhanced lithium battery with polyethylene oxide-based electrolyte containing silane-Al2 O3 ceramic filler.

Zewde BW, Admassie S, Zimmermann J, Isfort CS, Scrosati B, Hassoun J.

ChemSusChem. 2013 Aug;6(8):1400-5. doi: 10.1002/cssc.201300296. Epub 2013 Jun 11.

PMID:
23757331
6.

Ionic liquid-based membranes as electrolytes for advanced lithium polymer batteries.

Navarra MA, Manzi J, Lombardo L, Panero S, Scrosati B.

ChemSusChem. 2011 Jan 17;4(1):125-30. doi: 10.1002/cssc.201000254. Epub 2011 Jan 3.

PMID:
21226222
7.

Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte.

Luo JY, Cui WJ, He P, Xia YY.

Nat Chem. 2010 Sep;2(9):760-5. doi: 10.1038/nchem.763. Epub 2010 Aug 8.

PMID:
20729897
8.

Template-free bottom-up synthesis of yolk-shell vanadium oxide as high performance cathode for lithium ion batteries.

Pang H, Cheng P, Yang H, Lu J, Guo CX, Ning G, Li CM.

Chem Commun (Camb). 2013 Feb 21;49(15):1536-8. doi: 10.1039/c2cc38244j.

PMID:
23322132
9.

A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles.

Choudhury S, Mangal R, Agrawal A, Archer LA.

Nat Commun. 2015 Dec 4;6:10101. doi: 10.1038/ncomms10101.

10.

Mapping the anode surface-electrolyte interphase: investigating a life limiting process of lithium primary batteries.

Bock DC, Tappero RV, Takeuchi KJ, Marschilok AC, Takeuchi ES.

ACS Appl Mater Interfaces. 2015 Mar 11;7(9):5429-37. doi: 10.1021/am509066n. Epub 2015 Feb 24.

PMID:
25690846
11.

Instant gelation synthesis of 3D porous MoS2@C nanocomposites for lithium ion batteries.

Fei L, Xu Y, Wu X, Chen G, Li Y, Li B, Deng S, Smirnov S, Fan H, Luo H.

Nanoscale. 2014 Apr 7;6(7):3664-9. doi: 10.1039/c3nr05815h.

PMID:
24567121
12.

Cable-type flexible lithium ion battery based on hollow multi-helix electrodes.

Kwon YH, Woo SW, Jung HR, Yu HK, Kim K, Oh BH, Ahn S, Lee SY, Song SW, Cho J, Shin HC, Kim JY.

Adv Mater. 2012 Oct 2;24(38):5192-7, 5145. doi: 10.1002/adma.201202196. Epub 2012 Aug 7. No abstract available.

PMID:
22886776
13.

Interfacial characteristics of a PEGylated imidazolium bistriflamide ionic liquid electrolyte at a lithium ion battery cathode of LiMn2O4.

Rock SE, Wu L, Crain DJ, Krishnan S, Roy D.

ACS Appl Mater Interfaces. 2013 Mar;5(6):2075-84. doi: 10.1021/am302921r. Epub 2013 Mar 11.

PMID:
23432452
14.

Mussel-inspired adhesive binders for high-performance silicon nanoparticle anodes in lithium-ion batteries.

Ryou MH, Kim J, Lee I, Kim S, Jeong YK, Hong S, Ryu JH, Kim TS, Park JK, Lee H, Choi JW.

Adv Mater. 2013 Mar 20;25(11):1571-6. doi: 10.1002/adma.201203981. Epub 2012 Dec 27.

PMID:
23280515
15.

Solution-grown germanium nanowire anodes for lithium-ion batteries.

Chockla AM, Klavetter KC, Mullins CB, Korgel BA.

ACS Appl Mater Interfaces. 2012 Sep 26;4(9):4658-64. Epub 2012 Aug 28.

PMID:
22894797
16.

Mesoporous TiO2-B microspheres with superior rate performance for lithium ion batteries.

Liu H, Bi Z, Sun XG, Unocic RR, Paranthaman MP, Dai S, Brown GM.

Adv Mater. 2011 Aug 9;23(30):3450-4. doi: 10.1002/adma.201100599. Epub 2011 Jul 1. No abstract available.

PMID:
21721051
17.

Self-assembly of mesoporous CuO nanosheets-CNT 3D-network composites for lithium-ion batteries.

Huang H, Liu Y, Wang J, Gao M, Peng X, Ye Z.

Nanoscale. 2013 Mar 7;5(5):1785-8. doi: 10.1039/c3nr34070h. Epub 2013 Jan 29.

PMID:
23361121
18.

Building robust architectures of carbon and metal oxide nanocrystals toward high-performance anodes for lithium-ion batteries.

Jia X, Chen Z, Cui X, Peng Y, Wang X, Wang G, Wei F, Lu Y.

ACS Nano. 2012 Nov 27;6(11):9911-9. doi: 10.1021/nn303478e. Epub 2012 Nov 1.

PMID:
23046380
19.
20.

Progress in lithium-sulfur batteries: the effective role of a polysulfide-added electrolyte as buffer to prevent cathode dissolution.

Lee DJ, Agostini M, Park JW, Sun YK, Hassoun J, Scrosati B.

ChemSusChem. 2013 Dec;6(12):2245-8. doi: 10.1002/cssc.201300313. Epub 2013 Aug 13.

PMID:
23943264
Items per page

Supplemental Content

Write to the Help Desk