Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 106

1.

Natural variation in the yeast glucose-signaling network reveals a new role for the Mig3p transcription factor.

Lewis JA, Gasch AP.

G3 (Bethesda). 2012 Dec;2(12):1607-12. doi: 10.1534/g3.112.004127. Epub 2012 Dec 1.

PMID:
23275883
[PubMed - indexed for MEDLINE]
Free PMC Article
2.

Steady-state analysis of glucose repression reveals hierarchical expression of proteins under Mig1p control in Saccharomyces cerevisiae.

Verma M, Bhat PJ, Venkatesh KV.

Biochem J. 2005 Jun 15;388(Pt 3):843-9.

PMID:
15698380
[PubMed - indexed for MEDLINE]
Free PMC Article
3.

Stochastic analysis of the GAL genetic switch in Saccharomyces cerevisiae: modeling and experiments reveal hierarchy in glucose repression.

Prasad V, Venkatesh KV.

BMC Syst Biol. 2008 Nov 17;2:97. doi: 10.1186/1752-0509-2-97.

PMID:
19014615
[PubMed - indexed for MEDLINE]
Free PMC Article
5.

Quantitative transcription dynamic analysis reveals candidate genes and key regulators for ethanol tolerance in Saccharomyces cerevisiae.

Ma M, Liu LZ.

BMC Microbiol. 2010 Jun 10;10:169. doi: 10.1186/1471-2180-10-169.

PMID:
20537179
[PubMed - indexed for MEDLINE]
Free PMC Article
6.

Integration of transcriptional and posttranslational regulation in a glucose signal transduction pathway in Saccharomyces cerevisiae.

Kim JH, Brachet V, Moriya H, Johnston M.

Eukaryot Cell. 2006 Jan;5(1):167-73.

PMID:
16400179
[PubMed - indexed for MEDLINE]
Free PMC Article
7.

Overexpression of HAP4 in glucose-derepressed yeast cells reveals respiratory control of glucose-regulated genes.

Lascaris R, Piwowarski J, van der Spek H, Teixeira de Mattos J, Grivell L, Blom J.

Microbiology. 2004 Apr;150(Pt 4):929-34.

PMID:
15073302
[PubMed - indexed for MEDLINE]
Free Article
8.

Transcriptome analysis of a respiratory Saccharomyces cerevisiae strain suggests the expression of its phenotype is glucose insensitive and predominantly controlled by Hap4, Cat8 and Mig1.

Bonander N, Ferndahl C, Mostad P, Wilks MD, Chang C, Showe L, Gustafsson L, Larsson C, Bill RM.

BMC Genomics. 2008 Jul 31;9:365. doi: 10.1186/1471-2164-9-365.

PMID:
18671860
[PubMed - indexed for MEDLINE]
Free PMC Article
9.

Two glucose-sensing pathways converge on Rgt1 to regulate expression of glucose transporter genes in Saccharomyces cerevisiae.

Kim JH, Johnston M.

J Biol Chem. 2006 Sep 8;281(36):26144-9. Epub 2006 Jul 14.

PMID:
16844691
[PubMed - indexed for MEDLINE]
Free Article
10.

How the Rgt1 transcription factor of Saccharomyces cerevisiae is regulated by glucose.

Polish JA, Kim JH, Johnston M.

Genetics. 2005 Feb;169(2):583-94. Epub 2004 Oct 16.

PMID:
15489524
[PubMed - indexed for MEDLINE]
Free PMC Article
11.

Very low amounts of glucose cause repression of the stress-responsive gene HSP12 in Saccharomyces cerevisiae.

de Groot E, Bebelman JP, Mager WH, Planta RJ.

Microbiology. 2000 Feb;146 ( Pt 2):367-75.

PMID:
10708375
[PubMed - indexed for MEDLINE]
Free Article
12.

Genetic variation in Saccharomyces cerevisiae: circuit diversification in a signal transduction network.

Chin BL, Ryan O, Lewitter F, Boone C, Fink GR.

Genetics. 2012 Dec;192(4):1523-32. doi: 10.1534/genetics.112.145573. Epub 2012 Oct 10.

PMID:
23051644
[PubMed - indexed for MEDLINE]
Free PMC Article
13.

MIG1-dependent and MIG1-independent glucose regulation of MAL gene expression in Saccharomyces cerevisiae.

Hu Z, Nehlin JO, Ronne H, Michels CA.

Curr Genet. 1995 Aug;28(3):258-66.

PMID:
8529272
[PubMed - indexed for MEDLINE]
14.

A systems biology approach to study glucose repression in the yeast Saccharomyces cerevisiae.

Westergaard SL, Oliveira AP, Bro C, Olsson L, Nielsen J.

Biotechnol Bioeng. 2007 Jan 1;96(1):134-45.

PMID:
16878332
[PubMed - indexed for MEDLINE]
15.

Repressors Nrg1 and Nrg2 regulate a set of stress-responsive genes in Saccharomyces cerevisiae.

Vyas VK, Berkey CD, Miyao T, Carlson M.

Eukaryot Cell. 2005 Nov;4(11):1882-91.

PMID:
16278455
[PubMed - indexed for MEDLINE]
Free PMC Article
16.

A quantitative model of glucose signaling in yeast reveals an incoherent feed forward loop leading to a specific, transient pulse of transcription.

Kuttykrishnan S, Sabina J, Langton LL, Johnston M, Brent MR.

Proc Natl Acad Sci U S A. 2010 Sep 21;107(38):16743-8. doi: 10.1073/pnas.0912483107. Epub 2010 Sep 1.

PMID:
20810924
[PubMed - indexed for MEDLINE]
Free PMC Article
17.

Isolation and characterization of the LGT1 gene encoding a low-affinity glucose transporter from Torulaspora delbrueckii.

Alves-Ara├║jo C, Hernandez-Lopez MJ, Prieto JA, Randez-Gil F, Sousa MJ.

Yeast. 2005 Feb;22(3):165-75.

PMID:
15704215
[PubMed - indexed for MEDLINE]
18.

Functional characterization of transcriptional regulatory elements in the upstream region of the yeast GLK1 gene.

Herrero P, Flores L, de la Cera T, Moreno F.

Biochem J. 1999 Oct 15;343 Pt 2:319-25.

PMID:
10510295
[PubMed - indexed for MEDLINE]
Free PMC Article
19.

Two zinc-finger-containing repressors are responsible for glucose repression of SUC2 expression.

Lutfiyya LL, Johnston M.

Mol Cell Biol. 1996 Sep;16(9):4790-7.

PMID:
8756637
[PubMed - indexed for MEDLINE]
Free PMC Article
20.

Elucidation of the role of Grr1p in glucose sensing by Saccharomyces cerevisiae through genome-wide transcription analysis.

Westergaard SL, Bro C, Olsson L, Nielsen J.

FEMS Yeast Res. 2004 Dec;5(3):193-204.

PMID:
15556081
[PubMed - indexed for MEDLINE]

Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk