Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 168

1.

Band gap engineering of chemical vapor deposited graphene by in situ BN doping.

Chang CK, Kataria S, Kuo CC, Ganguly A, Wang BY, Hwang JY, Huang KJ, Yang WH, Wang SB, Chuang CH, Chen M, Huang CI, Pong WF, Song KJ, Chang SJ, Guo JH, Tai Y, Tsujimoto M, Isoda S, Chen CW, Chen LC, Chen KH.

ACS Nano. 2013 Feb 26;7(2):1333-41. doi: 10.1021/nn3049158. Epub 2013 Jan 4.

PMID:
23273110
[PubMed]
2.

Band gap opening of graphene by doping small boron nitride domains.

Fan X, Shen Z, Liu AQ, Kuo JL.

Nanoscale. 2012 Mar 21;4(6):2157-65. doi: 10.1039/c2nr11728b. Epub 2012 Feb 20.

PMID:
22344594
[PubMed - indexed for MEDLINE]
3.

Tunable doping and band gap of graphene on functionalized hexagonal boron nitride with hydrogen and fluorine.

Tang S, Yu J, Liu L.

Phys Chem Chem Phys. 2013 Apr 14;15(14):5067-77. doi: 10.1039/c3cp44460k.

PMID:
23450178
[PubMed - indexed for MEDLINE]
4.

Isoelectronic doping of graphdiyne with boron and nitrogen: stable configurations and band gap modification.

Bu H, Zhao M, Zhang H, Wang X, Xi Y, Wang Z.

J Phys Chem A. 2012 Apr 19;116(15):3934-9. doi: 10.1021/jp300107d. Epub 2012 Apr 9.

PMID:
22435915
[PubMed]
5.

Large-scale synthesis of high-quality hexagonal boron nitride nanosheets for large-area graphene electronics.

Lee KH, Shin HJ, Lee J, Lee IY, Kim GH, Choi JY, Kim SW.

Nano Lett. 2012 Feb 8;12(2):714-8. doi: 10.1021/nl203635v. Epub 2012 Jan 13.

PMID:
22220633
[PubMed - indexed for MEDLINE]
6.

Electronic structure of a graphene/hexagonal-BN heterostructure grown on Ru(0001) by chemical vapor deposition and atomic layer deposition: extrinsically doped graphene.

Bjelkevig C, Mi Z, Xiao J, Dowben PA, Wang L, Mei WN, Kelber JA.

J Phys Condens Matter. 2010 Aug 4;22(30):302002. doi: 10.1088/0953-8984/22/30/302002. Epub 2010 Jul 2.

PMID:
21399331
[PubMed]
7.

Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper.

Li X, Magnuson CW, Venugopal A, Tromp RM, Hannon JB, Vogel EM, Colombo L, Ruoff RS.

J Am Chem Soc. 2011 Mar 9;133(9):2816-9. doi: 10.1021/ja109793s. Epub 2011 Feb 10.

PMID:
21309560
[PubMed]
8.

Chemical vapor deposition and characterization of aligned and incommensurate graphene/hexagonal boron nitride heterostack on Cu(111).

Roth S, Matsui F, Greber T, Osterwalder J.

Nano Lett. 2013 Jun 12;13(6):2668-75. doi: 10.1021/nl400815w. Epub 2013 May 14.

PMID:
23656509
[PubMed]
9.

Incorporation of small BN domains in graphene during CVD using methane, boric acid and nitrogen gas.

Bepete G, Voiry D, Chhowalla M, Chiguvare Z, Coville NJ.

Nanoscale. 2013 Jul 21;5(14):6552-7. doi: 10.1039/c3nr01699d. Epub 2013 Jun 12.

PMID:
23759928
[PubMed - indexed for MEDLINE]
10.

Wafer scale homogeneous bilayer graphene films by chemical vapor deposition.

Lee S, Lee K, Zhong Z.

Nano Lett. 2010 Nov 10;10(11):4702-7. doi: 10.1021/nl1029978. Epub 2010 Oct 8.

PMID:
20932046
[PubMed - indexed for MEDLINE]
11.

Direct assessment of the mechanical modulus of graphene co-doped with low concentrations of boron-nitrogen by a non-contact approach.

Pan SH, Medina H, Wang SB, Chou LJ, Wang ZM, Chen KH, Chen LC, Chueh YL.

Nanoscale. 2014 Jul 10;6(15):8635-41. doi: 10.1039/c4nr00495g.

PMID:
24882359
[PubMed - in process]
12.

Tight binding description on the band gap opening of pyrene-dispersed graphene.

Chen DM, Shenai PM, Zhao Y.

Phys Chem Chem Phys. 2011 Jan 28;13(4):1515-20. doi: 10.1039/c0cp00909a. Epub 2010 Nov 29.

PMID:
21113551
[PubMed]
13.

Integration of hexagonal boron nitride with quasi-freestanding epitaxial graphene: toward wafer-scale, high-performance devices.

Bresnehan MS, Hollander MJ, Wetherington M, LaBella M, Trumbull KA, Cavalero R, Snyder DW, Robinson JA.

ACS Nano. 2012 Jun 26;6(6):5234-41. doi: 10.1021/nn300996t. Epub 2012 May 8.

PMID:
22545808
[PubMed - indexed for MEDLINE]
14.

Repeated and controlled growth of monolayer, bilayer and few-layer hexagonal boron nitride on Pt foils.

Gao Y, Ren W, Ma T, Liu Z, Zhang Y, Liu WB, Ma LP, Ma X, Cheng HM.

ACS Nano. 2013 Jun 25;7(6):5199-206. doi: 10.1021/nn4009356. Epub 2013 May 16.

PMID:
23663007
[PubMed]
15.

Epitaxial graphene on 4H-SiC(0001) grown under nitrogen flux: evidence of low nitrogen doping and high charge transfer.

Velez-Fort E, Mathieu C, Pallecchi E, Pigneur M, Silly MG, Belkhou R, Marangolo M, Shukla A, Sirotti F, Ouerghi A.

ACS Nano. 2012 Dec 21;6(12):10893-900. doi: 10.1021/nn304315z. Epub 2012 Nov 20.

PMID:
23148722
[PubMed]
16.

Band gap opening of bilayer graphene by F4-TCNQ molecular doping and externally applied electric field.

Tian X, Xu J, Wang X.

J Phys Chem B. 2010 Sep 9;114(35):11377-81. doi: 10.1021/jp102800v.

PMID:
20690622
[PubMed]
17.

Molecular doping and band-gap opening of bilayer graphene.

Samuels AJ, Carey JD.

ACS Nano. 2013 Mar 26;7(3):2790-9. doi: 10.1021/nn400340q. Epub 2013 Feb 27.

PMID:
23414110
[PubMed]
18.

Molecular self-assembly on graphene on SiO2 and h-BN substrates.

Järvinen P, Hämäläinen SK, Banerjee K, Häkkinen P, Ijäs M, Harju A, Liljeroth P.

Nano Lett. 2013 Jul 10;13(7):3199-204. doi: 10.1021/nl401265f. Epub 2013 Jun 26.

PMID:
23786613
[PubMed - in process]
19.

Quasiparticle band gap engineering of graphene and graphone on hexagonal boron nitride substrate.

Kharche N, Nayak SK.

Nano Lett. 2011 Dec 14;11(12):5274-8. doi: 10.1021/nl202725w. Epub 2011 Oct 27.

PMID:
22026533
[PubMed]
20.

Converting graphene oxide monolayers into boron carbonitride nanosheets by substitutional doping.

Lin TW, Su CY, Zhang XQ, Zhang W, Lee YH, Chu CW, Lin HY, Chang MT, Chen FR, Li LJ.

Small. 2012 May 7;8(9):1384-91. doi: 10.1002/smll.201101927. Epub 2012 Feb 29.

PMID:
22378619
[PubMed]

Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk