Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 114

1.

Single amino acid substitutions in HXT2.4 from Scheffersomyces stipitis lead to improved cellobiose fermentation by engineered Saccharomyces cerevisiae.

Ha SJ, Kim H, Lin Y, Jang MU, Galazka JM, Kim TJ, Cate JH, Jin YS.

Appl Environ Microbiol. 2013 Mar;79(5):1500-7. doi: 10.1128/AEM.03253-12. Epub 2012 Dec 21.

PMID:
23263959
[PubMed - indexed for MEDLINE]
Free PMC Article
2.

Analysis of cellodextrin transporters from Neurospora crassa in Saccharomyces cerevisiae for cellobiose fermentation.

Kim H, Lee WH, Galazka JM, Cate JH, Jin YS.

Appl Microbiol Biotechnol. 2014 Feb;98(3):1087-94. doi: 10.1007/s00253-013-5339-2. Epub 2013 Nov 5.

PMID:
24190499
[PubMed - in process]
3.

Molecular cloning and expression of fungal cellobiose transporters and β-glucosidases conferring efficient cellobiose fermentation in Saccharomyces cerevisiae.

Bae YH, Kang KH, Jin YS, Seo JH.

J Biotechnol. 2014 Jan;169:34-41. doi: 10.1016/j.jbiotec.2013.10.030. Epub 2013 Oct 31.

PMID:
24184384
[PubMed - in process]
4.

Cofermentation of cellobiose and galactose by an engineered Saccharomyces cerevisiae strain.

Ha SJ, Wei Q, Kim SR, Galazka JM, Cate JH, Jin YS.

Appl Environ Microbiol. 2011 Aug 15;77(16):5822-5. doi: 10.1128/AEM.05228-11. Epub 2011 Jun 24. Erratum in: Appl Environ Microbiol. 2011 Oct;77(20):7438. Cate, Jamie [corrected to Cate, Jamie H D].

PMID:
21705527
[PubMed - indexed for MEDLINE]
Free PMC Article
5.

Optimization of CDT-1 and XYL1 expression for balanced co-production of ethanol and xylitol from cellobiose and xylose by engineered Saccharomyces cerevisiae.

Zha J, Li BZ, Shen MH, Hu ML, Song H, Yuan YJ.

PLoS One. 2013 Jul 2;8(7):e68317. doi: 10.1371/journal.pone.0068317. Print 2013.

PMID:
23844185
[PubMed - indexed for MEDLINE]
Free PMC Article
6.

Enhanced xylitol production through simultaneous co-utilization of cellobiose and xylose by engineered Saccharomyces cerevisiae.

Oh EJ, Ha SJ, Rin Kim S, Lee WH, Galazka JM, Cate JH, Jin YS.

Metab Eng. 2013 Jan;15:226-34. doi: 10.1016/j.ymben.2012.09.003. Epub 2012 Oct 24.

PMID:
23103205
[PubMed - indexed for MEDLINE]
7.

Energetic benefits and rapid cellobiose fermentation by Saccharomyces cerevisiae expressing cellobiose phosphorylase and mutant cellodextrin transporters.

Ha SJ, Galazka JM, Joong Oh E, Kordić V, Kim H, Jin YS, Cate JH.

Metab Eng. 2013 Jan;15:134-43. doi: 10.1016/j.ymben.2012.11.005. Epub 2012 Nov 22.

PMID:
23178501
[PubMed - indexed for MEDLINE]
8.

Development of an industrial ethanol-producing yeast strain for efficient utilization of cellobiose.

Guo ZP, Zhang L, Ding ZY, Gu ZH, Shi GY.

Enzyme Microb Technol. 2011 Jun 10;49(1):105-12. doi: 10.1016/j.enzmictec.2011.02.008. Epub 2011 Mar 3.

PMID:
22112279
[PubMed - indexed for MEDLINE]
9.

Continuous co-fermentation of cellobiose and xylose by engineered Saccharomyces cerevisiae.

Ha SJ, Kim SR, Kim H, Du J, Cate JH, Jin YS.

Bioresour Technol. 2013 Dec;149:525-31. doi: 10.1016/j.biortech.2013.09.082. Epub 2013 Sep 27.

PMID:
24140899
[PubMed - indexed for MEDLINE]
10.

An evaluation of cellulose saccharification and fermentation with an engineered Saccharomyces cerevisiae capable of cellobiose and xylose utilization.

Fox JM, Levine SE, Blanch HW, Clark DS.

Biotechnol J. 2012 Mar;7(3):361-73. doi: 10.1002/biot.201100209.

PMID:
22228702
[PubMed - indexed for MEDLINE]
12.

Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation.

Ha SJ, Galazka JM, Kim SR, Choi JH, Yang X, Seo JH, Glass NL, Cate JH, Jin YS.

Proc Natl Acad Sci U S A. 2011 Jan 11;108(2):504-9. doi: 10.1073/pnas.1010456108. Epub 2010 Dec 27.

PMID:
21187422
[PubMed - indexed for MEDLINE]
Free PMC Article
13.

The HXT2 gene of Saccharomyces cerevisiae is required for high-affinity glucose transport.

Kruckeberg AL, Bisson LF.

Mol Cell Biol. 1990 Nov;10(11):5903-13.

PMID:
2233722
[PubMed - indexed for MEDLINE]
Free PMC Article
14.

Simultaneous saccharification and fermentation by engineered Saccharomyces cerevisiae without supplementing extracellular β-glucosidase.

Lee WH, Nan H, Kim HJ, Jin YS.

J Biotechnol. 2013 Sep 10;167(3):316-22. doi: 10.1016/j.jbiotec.2013.06.016. Epub 2013 Jul 5.

PMID:
23835155
[PubMed - indexed for MEDLINE]
15.

Directed evolution of a cellodextrin transporter for improved biofuel production under anaerobic conditions in Saccharomyces cerevisiae.

Lian J, Li Y, HamediRad M, Zhao H.

Biotechnol Bioeng. 2014 Aug;111(8):1521-31. doi: 10.1002/bit.25214. Epub 2014 Mar 11.

PMID:
24519319
[PubMed - in process]
16.

High expression of XYL2 coding for xylitol dehydrogenase is necessary for efficient xylose fermentation by engineered Saccharomyces cerevisiae.

Kim SR, Ha SJ, Kong II, Jin YS.

Metab Eng. 2012 Jul;14(4):336-43. doi: 10.1016/j.ymben.2012.04.001. Epub 2012 Apr 13.

PMID:
22521925
[PubMed - indexed for MEDLINE]
17.

Functional expression, quantification and cellular localization of the Hxt2 hexose transporter of Saccharomyces cerevisiae tagged with the green fluorescent protein.

Kruckeberg AL, Ye L, Berden JA, van Dam K.

Biochem J. 1999 Apr 15;339 ( Pt 2):299-307.

PMID:
10191260
[PubMed - indexed for MEDLINE]
Free PMC Article
18.

Investigation of the functional role of aldose 1-epimerase in engineered cellobiose utilization.

Li S, Ha SJ, Kim HJ, Galazka JM, Cate JH, Jin YS, Zhao H.

J Biotechnol. 2013 Oct 10;168(1):1-6. doi: 10.1016/j.jbiotec.2013.08.003. Epub 2013 Aug 14.

PMID:
23954547
[PubMed - indexed for MEDLINE]
19.

Transmembrane segments 1, 5, 7 and 8 are required for high-affinity glucose transport by Saccharomyces cerevisiae Hxt2 transporter.

Kasahara T, Kasahara M.

Biochem J. 2003 May 15;372(Pt 1):247-52.

PMID:
12603199
[PubMed - indexed for MEDLINE]
Free PMC Article
20.

Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk