Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 121

Similar articles for PubMed (Select 23256513)

1.

Evolution of cis-regulatory elements in yeast de novo and duplicated new genes.

Tsai ZT, Tsai HK, Cheng JH, Lin CH, Tsai YF, Wang D.

BMC Genomics. 2012 Dec 21;13:717. doi: 10.1186/1471-2164-13-717.

2.

Diversification at transcription factor binding sites within a species and the implications for environmental adaptation.

Ames RM, Lovell SC.

Mol Biol Evol. 2011 Dec;28(12):3331-44. doi: 10.1093/molbev/msr167. Epub 2011 Jun 20.

3.

The spatial distribution of cis regulatory elements in yeast promoters and its implications for transcriptional regulation.

Lin Z, Wu WS, Liang H, Woo Y, Li WH.

BMC Genomics. 2010 Oct 19;11:581. doi: 10.1186/1471-2164-11-581.

4.

Evolution of cis-regulatory elements in duplicated genes of yeast.

Papp B, Pál C, Hurst LD.

Trends Genet. 2003 Aug;19(8):417-22.

PMID:
12902158
5.

Frequent gain and loss of functional transcription factor binding sites.

Doniger SW, Fay JC.

PLoS Comput Biol. 2007 May;3(5):e99. Epub 2007 Apr 19. Erratum in: PLoS Comput Biol. 2009 Feb;5(2). doi: 10.1371/annotation/363b6074-caec-4238-b88f-acbf45de498f.

6.

The enrichment of TATA box and the scarcity of depleted proximal nucleosome in the promoters of duplicated yeast genes.

Kim Y, Lee JH, Babbitt GA.

J Mol Evol. 2010 Jan;70(1):69-73. doi: 10.1007/s00239-009-9309-3. Epub 2009 Dec 16.

PMID:
20013336
7.

Sequencing and comparison of yeast species to identify genes and regulatory elements.

Kellis M, Patterson N, Endrizzi M, Birren B, Lander ES.

Nature. 2003 May 15;423(6937):241-54.

PMID:
12748633
9.

Histone modification pattern evolution after yeast gene duplication.

Zou Y, Su Z, Huang W, Gu X.

BMC Evol Biol. 2012 Jul 9;12:111. doi: 10.1186/1471-2148-12-111.

10.

De novo origination of a new protein-coding gene in Saccharomyces cerevisiae.

Cai J, Zhao R, Jiang H, Wang W.

Genetics. 2008 May;179(1):487-96. doi: 10.1534/genetics.107.084491.

11.

Evidence of association between nucleosome occupancy and the evolution of transcription factor binding sites in yeast.

Swamy KB, Chu WY, Wang CY, Tsai HK, Wang D.

BMC Evol Biol. 2011 May 31;11:150. doi: 10.1186/1471-2148-11-150.

12.
13.

cis- and trans-acting regulatory elements of the yeast URA3 promoter.

Roy A, Exinger F, Losson R.

Mol Cell Biol. 1990 Oct;10(10):5257-70.

14.

Natural selection on gene order in the genome reorganization process after whole-genome duplication of yeast.

Sugino RP, Innan H.

Mol Biol Evol. 2012 Jan;29(1):71-9. doi: 10.1093/molbev/msr118. Epub 2011 May 5.

15.

Selective constraints in experimentally defined primate regulatory regions.

Gaffney DJ, Blekhman R, Majewski J.

PLoS Genet. 2008 Aug 15;4(8):e1000157. doi: 10.1371/journal.pgen.1000157.

17.
18.

The effects of protein interactions, gene essentiality and regulatory regions on expression variation.

Zhou L, Ma X, Sun F.

BMC Syst Biol. 2008 Jun 26;2:54. doi: 10.1186/1752-0509-2-54.

19.

TFIIIC-independent in vitro transcription of yeast tRNA genes.

Dieci G, Percudani R, Giuliodori S, Bottarelli L, Ottonello S.

J Mol Biol. 2000 Jun 9;299(3):601-13.

PMID:
10835271
20.

Genome-wide expression profiling, in vivo DNA binding analysis, and probabilistic motif prediction reveal novel Abf1 target genes during fermentation, respiration, and sporulation in yeast.

Schlecht U, Erb I, Demougin P, Robine N, Borde V, van Nimwegen E, Nicolas A, Primig M.

Mol Biol Cell. 2008 May;19(5):2193-207. doi: 10.1091/mbc.E07-12-1242. Epub 2008 Feb 27.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk