Format
Items per page
Sort by

Send to:

Choose Destination

Links from PubMed

Items: 1 to 20 of 160

1.

Metabolic engineering of Escherichia coli for the production of 5-aminovalerate and glutarate as C5 platform chemicals.

Park SJ, Kim EY, Noh W, Park HM, Oh YH, Lee SH, Song BK, Jegal J, Lee SY.

Metab Eng. 2013 Mar;16:42-7. doi: 10.1016/j.ymben.2012.11.011. Epub 2012 Dec 14.

PMID:
23246520
2.

High-level conversion of L-lysine into 5-aminovalerate that can be used for nylon 6,5 synthesis.

Park SJ, Oh YH, Noh W, Kim HY, Shin JH, Lee EG, Lee S, David Y, Baylon MG, Song BK, Jegal J, Lee SY, Lee SH.

Biotechnol J. 2014 Oct;9(10):1322-8. doi: 10.1002/biot.201400156. Epub 2014 Sep 8.

PMID:
25124937
3.

Engineering Escherichia coli for renewable production of the 5-carbon polyamide building-blocks 5-aminovalerate and glutarate.

Adkins J, Jordan J, Nielsen DR.

Biotechnol Bioeng. 2013 Jun;110(6):1726-34. doi: 10.1002/bit.24828. Epub 2013 Jan 17.

PMID:
23296991
4.

Enzymatic production of 5-aminovalerate from L-lysine using L-lysine monooxygenase and 5-aminovaleramide amidohydrolase.

Liu P, Zhang H, Lv M, Hu M, Li Z, Gao C, Xu P, Ma C.

Sci Rep. 2014 Jul 11;4:5657. doi: 10.1038/srep05657.

6.

Vanillin production using Escherichia coli cells over-expressing isoeugenol monooxygenase of Pseudomonas putida.

Yamada M, Okada Y, Yoshida T, Nagasawa T.

Biotechnol Lett. 2008 Apr;30(4):665-70. Epub 2007 Nov 27.

PMID:
18040605
7.

Biosynthesis of polyhydroxyalkanoates containing 2-hydroxybutyrate from unrelated carbon source by metabolically engineered Escherichia coli.

Park SJ, Lee TW, Lim SC, Kim TW, Lee H, Kim MK, Lee SH, Song BK, Lee SY.

Appl Microbiol Biotechnol. 2012 Jan;93(1):273-83. doi: 10.1007/s00253-011-3530-x. Epub 2011 Aug 14.

PMID:
21842437
8.

Production of medium chain length fatty alcohols from glucose in Escherichia coli.

Youngquist JT, Schumacher MH, Rose JP, Raines TC, Politz MC, Copeland MF, Pfleger BF.

Metab Eng. 2013 Nov;20:177-86. doi: 10.1016/j.ymben.2013.10.006. Epub 2013 Oct 17.

9.

Multiple and interconnected pathways for L-lysine catabolism in Pseudomonas putida KT2440.

Revelles O, Espinosa-Urgel M, Fuhrer T, Sauer U, Ramos JL.

J Bacteriol. 2005 Nov;187(21):7500-10.

10.

Hyperproduction of poly(4-hydroxybutyrate) from glucose by recombinant Escherichia coli.

Zhou XY, Yuan XX, Shi ZY, Meng DC, Jiang WJ, Wu LP, Chen JC, Chen GQ.

Microb Cell Fact. 2012 May 2;11:54. doi: 10.1186/1475-2859-11-54.

11.

Potential production platform of n-butanol in Escherichia coli.

Saini M, Hong Chen M, Chiang CJ, Chao YP.

Metab Eng. 2015 Jan;27:76-82. doi: 10.1016/j.ymben.2014.11.001. Epub 2014 Nov 15.

PMID:
25461833
12.

The oxidation of alkylaryl sulfides and benzo[b]thiophenes by Escherichia coli cells expressing wild-type and engineered styrene monooxygenase from Pseudomonas putida CA-3.

Nikodinovic-Runic J, Coulombel L, Francuski D, Sharma ND, Boyd DR, Ferrall RM, O'Connor KE.

Appl Microbiol Biotechnol. 2013 Jun;97(11):4849-58. doi: 10.1007/s00253-012-4332-5. Epub 2012 Aug 14.

PMID:
22890778
13.
14.

Catechol biosynthesis from glucose in Escherichia coli anthranilate-overproducer strains by heterologous expression of anthranilate 1,2-dioxygenase from Pseudomonas aeruginosa PAO1.

Balderas-Hernández VE, Treviño-Quintanilla LG, Hernández-Chávez G, Martinez A, Bolívar F, Gosset G.

Microb Cell Fact. 2014 Oct 4;13:136. doi: 10.1186/s12934-014-0136-x.

15.

De novo production of the monoterpenoid geranic acid by metabolically engineered Pseudomonas putida.

Mi J, Becher D, Lubuta P, Dany S, Tusch K, Schewe H, Buchhaupt M, Schrader J.

Microb Cell Fact. 2014 Dec 4;13:170. doi: 10.1186/s12934-014-0170-8.

17.

Metabolic engineering of Escherichia coli for improving L-3,4-dihydroxyphenylalanine (L-DOPA) synthesis from glucose.

Muñoz AJ, Hernández-Chávez G, de Anda R, Martínez A, Bolívar F, Gosset G.

J Ind Microbiol Biotechnol. 2011 Nov;38(11):1845-52. doi: 10.1007/s10295-011-0973-0. Epub 2011 Apr 22.

PMID:
21512819
18.

Construction of an L-serine producing Escherichia coli via metabolic engineering.

Gu P, Yang F, Su T, Li F, Li Y, Qi Q.

J Ind Microbiol Biotechnol. 2014 Sep;41(9):1443-50. doi: 10.1007/s10295-014-1476-6. Epub 2014 Jul 6.

PMID:
24997624
19.

Oxidative decarboxylation of mandelic acid derivative by recombinant Escherichia coli: a novel method of ethyl vanillin synthesis.

Pan XX, Li JJ, Wang MG, He WS, Jia CS, Zhang XM, Feng B, Li DL, Zeng Z.

Biotechnol Lett. 2013 Jun;35(6):921-7. doi: 10.1007/s10529-013-1158-x. Epub 2013 Feb 22.

PMID:
23430129
20.

Enhanced indirubin production in recombinant Escherichia coli harboring a flavin-containing monooxygenase gene by cysteine supplementation.

Han GH, Gim GH, Kim W, Seo SI, Kim SW.

J Biotechnol. 2012 Dec 15;164(2):179-87. doi: 10.1016/j.jbiotec.2012.08.015. Epub 2012 Aug 30.

PMID:
22954889
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk