Format
Items per page
Sort by

Send to:

Choose Destination

Links from PubMed

Items: 1 to 20 of 206

1.

Effects of rod stiffness and fusion mass on the adjacent segments after floating mono-segmental fusion: a study using finite element analysis.

Jin YJ, Kim YE, Seo JH, Choi HW, Jahng TA.

Eur Spine J. 2013 May;22(5):1066-77. doi: 10.1007/s00586-012-2611-6. Epub 2012 Dec 16.

2.

Biomechanical evaluation of a new pedicle screw-based posterior dynamic stabilization device (Awesome Rod System)--a finite element analysis.

Chen CS, Huang CH, Shih SL.

BMC Musculoskelet Disord. 2015 Apr 9;16:81. doi: 10.1186/s12891-015-0538-x.

3.

Spinal motion and intradiscal pressure measurements before and after lumbar spine instrumentation with titanium or PEEK rods.

Abode-Iyamah K, Kim SB, Grosland N, Kumar R, Belirgen M, Lim TH, Torner J, Hitchon PW.

J Clin Neurosci. 2014 Apr;21(4):651-5. doi: 10.1016/j.jocn.2013.08.010. Epub 2013 Sep 7.

PMID:
24314848
4.

Transforaminal lumbar interbody fusion: the effect of various instrumentation techniques on the flexibility of the lumbar spine.

Harris BM, Hilibrand AS, Savas PE, Pellegrino A, Vaccaro AR, Siegler S, Albert TJ.

Spine (Phila Pa 1976). 2004 Feb 15;29(4):E65-70.

PMID:
15094547
5.

A computational biomechanical investigation of posterior dynamic instrumentation: combination of dynamic rod and hinged (dynamic) screw.

Erbulut DU, Kiapour A, Oktenoglu T, Ozer AF, Goel VK.

J Biomech Eng. 2014 May;136(5):051007. doi: 10.1115/1.4027060.

PMID:
24599026
6.

Biomechanics of adjacent segments after a multilevel cervical corpectomy using anterior, posterior, and combined anterior-posterior instrumentation techniques: a finite element model study.

Hussain M, Nassr A, Natarajan RN, An HS, Andersson GB.

Spine J. 2013 Jun;13(6):689-96. doi: 10.1016/j.spinee.2013.02.062. Epub 2013 Apr 9.

PMID:
23578989
7.

Biomechanics of dynamic rod segments for achieving transitional stiffness with lumbosacral fusion.

Lazaro BC, Reyes PM, Newcomb AG, Yaqoobi AS, Brasiliense LB, Sonntag VK, Crawford NR.

Neurosurgery. 2013 Sep;73(3):517-27. doi: 10.1227/NEU.0000000000000009.

PMID:
23756746
8.

Immediate biomechanical effects of lumbar posterior dynamic stabilization above a circumferential fusion.

Cheng BC, Gordon J, Cheng J, Welch WC.

Spine (Phila Pa 1976). 2007 Nov 1;32(23):2551-7.

PMID:
17978653
9.

Effects of nonlinearity in the materials used for the semi-rigid pedicle screw systems on biomechanical behaviors of the lumbar spine after surgery.

Kim H, Lim DH, Oh HJ, Lee KY, Lee SJ.

Biomed Mater. 2011 Oct;6(5):055005. doi: 10.1088/1748-6041/6/5/055005. Epub 2011 Aug 18.

PMID:
21849724
10.
11.

Biomechanical assessment of a PEEK rod system for semi-rigid fixation of lumbar fusion constructs.

Gornet MF, Chan FW, Coleman JC, Murrell B, Nockels RP, Taylor BA, Lanman TH, Ochoa JA.

J Biomech Eng. 2011 Aug;133(8):081009. doi: 10.1115/1.4004862.

PMID:
21950902
12.

[Adjacent segment degeneration after lumbosacral fusion in spondylolisthesis: a retrospective radiological and clinical analysis].

Zencica P, Chaloupka R, Hladíková J, Krbec M.

Acta Chir Orthop Traumatol Cech. 2010 Apr;77(2):124-30. Czech.

PMID:
20447355
13.

Comparison of the biomechanical effect of pedicle-based dynamic stabilization: a study using finite element analysis.

Jahng TA, Kim YE, Moon KY.

Spine J. 2013 Jan;13(1):85-94. doi: 10.1016/j.spinee.2012.11.014. Epub 2012 Dec 21.

PMID:
23266148
14.

Hybrid dynamic stabilization: a biomechanical assessment of adjacent and supraadjacent levels of the lumbar spine.

Mageswaran P, Techy F, Colbrunn RW, Bonner TF, McLain RF.

J Neurosurg Spine. 2012 Sep;17(3):232-42. doi: 10.3171/2012.6.SPINE111054. Epub 2012 Jul 27.

PMID:
22839756
15.

Biomechanics of two-level Charité artificial disc placement in comparison to fusion plus single-level disc placement combination.

Grauer JN, Biyani A, Faizan A, Kiapour A, Sairyo K, Ivanov A, Ebraheim NA, Patel TCh, Goel VK.

Spine J. 2006 Nov-Dec;6(6):659-66. Epub 2006 Oct 10.

PMID:
17088196
16.

Adjacent segment mobility after rigid and semirigid instrumentation of the lumbar spine.

Cakir B, Carazzo C, Schmidt R, Mattes T, Reichel H, Käfer W.

Spine (Phila Pa 1976). 2009 May 20;34(12):1287-91. doi: 10.1097/BRS.0b013e3181a136ab.

PMID:
19455004
17.

Biomechanical comparison of an interspinous device and a rigid stabilization on lumbar adjacent segment range of motion.

Hartmann F, Dietz SO, Kuhn S, Hely H, Rommens PM, Gercek E.

Acta Chir Orthop Traumatol Cech. 2011;78(5):404-9.

PMID:
22094153
18.

The biomechanical effects of spondylolysis and its treatment.

Mihara H, Onari K, Cheng BC, David SM, Zdeblick TA.

Spine (Phila Pa 1976). 2003 Feb 1;28(3):235-8.

PMID:
12567023
19.

Effects of lumbar arthrodesis on adjacent segments: differences between surgical techniques.

Kim TY, Kang KT, Yoon DH, Shin HC, Kim KN, Yi S, Chun HJ, Oh JK, Choi GH, Lee K 2nd, Ha Y.

Spine (Phila Pa 1976). 2012 Aug 1;37(17):1456-62.

PMID:
22333957
20.

Segmental motion adjacent to an instrumented lumbar fusion: the effect of extension of fusion to the sacrum.

Untch C, Liu Q, Hart R.

Spine (Phila Pa 1976). 2004 Nov 1;29(21):2376-81.

PMID:
15507798
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk