Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 100

1.

Treatment of growth plate injury using IGF-I-loaded PLGA scaffolds.

Sundararaj SK, Cieply RD, Gupta G, Milbrandt TA, Puleo DA.

J Tissue Eng Regen Med. 2015 Dec;9(12):E202-9. doi: 10.1002/term.1670. Epub 2012 Dec 14.

PMID:
23239617
2.

Treating Proximal Tibial Growth Plate Injuries Using Poly(Lactic-co-Glycolic Acid) Scaffolds.

Clark A, Hilt JZ, Milbrandt TA, Puleo DA.

Biores Open Access. 2015 Jan 1;4(1):65-74. doi: 10.1089/biores.2014.0034. eCollection 2015.

3.
4.

Enhancing the bioactivity of Poly(lactic-co-glycolic acid) scaffold with a nano-hydroxyapatite coating for the treatment of segmental bone defect in a rabbit model.

Wang DX, He Y, Bi L, Qu ZH, Zou JW, Pan Z, Fan JJ, Chen L, Dong X, Liu XN, Pei GX, Ding JD.

Int J Nanomedicine. 2013;8:1855-65. doi: 10.2147/IJN.S43706. Epub 2013 May 9.

5.
6.

Retention of insulin-like growth factor I bioactivity during the fabrication of sintered polymeric scaffolds.

Clark A, Milbrandt TA, Hilt JZ, Puleo DA.

Biomed Mater. 2014 Apr;9(2):025015. doi: 10.1088/1748-6041/9/2/025015. Epub 2014 Feb 24.

7.

Fabrication and characterization of prosurvival growth factor releasing, anisotropic scaffolds for enhanced mesenchymal stem cell survival/growth and orientation.

Wang F, Li Z, Tamama K, Sen CK, Guan J.

Biomacromolecules. 2009 Sep 14;10(9):2609-18. doi: 10.1021/bm900541u.

PMID:
19689108
8.

Effects of hesperidin loaded poly(lactic-co-glycolic acid) scaffolds on growth behavior of costal cartilage cells in vitro and in vivo.

Cho SA, Cha SR, Park SM, Kim KH, Lee HG, Kim EY, Lee D, Khang G.

J Biomater Sci Polym Ed. 2014;25(6):625-40. doi: 10.1080/09205063.2014.888304. Epub 2014 Mar 3.

PMID:
24588773
9.

Sequential release of bioactive IGF-I and TGF-beta 1 from PLGA microsphere-based scaffolds.

Jaklenec A, Hinckfuss A, Bilgen B, Ciombor DM, Aaron R, Mathiowitz E.

Biomaterials. 2008 Apr;29(10):1518-25. doi: 10.1016/j.biomaterials.2007.12.004. Epub 2007 Dec 31.

PMID:
18166223
10.

Effects of in vitro chondrogenic priming time of bone-marrow-derived mesenchymal stromal cells on in vivo endochondral bone formation.

Yang W, Both SK, van Osch GJ, Wang Y, Jansen JA, Yang F.

Acta Biomater. 2015 Feb;13:254-65. doi: 10.1016/j.actbio.2014.11.029. Epub 2014 Nov 20.

PMID:
25463490
11.

Transplantation of autologous endothelial progenitor cells in porous PLGA scaffolds create a microenvironment for the regeneration of hyaline cartilage in rabbits.

Chang NJ, Lam CF, Lin CC, Chen WL, Li CF, Lin YT, Yeh ML.

Osteoarthritis Cartilage. 2013 Oct;21(10):1613-22. doi: 10.1016/j.joca.2013.07.016. Epub 2013 Aug 6.

12.

[Repairing defects of rabbit articular cartilage and subchondral bone with biphasic scaffold combined bone marrow stromal stem cells].

Liu M, Xiang Z, Pei F, Huang F, Cen S, Zhong G, Fan H, Xiao Y, Sun J, Gao Y.

Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2010 Jan;24(1):87-93. Chinese.

PMID:
20135980
13.

In vivo bone formation following transplantation of human adipose-derived stromal cells that are not differentiated osteogenically.

Jeon O, Rhie JW, Kwon IK, Kim JH, Kim BS, Lee SH.

Tissue Eng Part A. 2008 Aug;14(8):1285-94. doi: 10.1089/ten.tea.2007.0253.

PMID:
18593269
14.

Bioactive IGF-1 release from collagen-GAG scaffold to enhance cartilage repair in vitro.

Mullen LM, Best SM, Ghose S, Wardale J, Rushton N, Cameron RE.

J Mater Sci Mater Med. 2015 Jan;26(1):5325. doi: 10.1007/s10856-014-5325-y. Epub 2015 Jan 11.

15.
16.

[Repair of skin damage with mesenchymal stem cells-poly (lactic-co-glycolic acid) scaffolds: experimental study with rabbits].

Wang GX, Wang Y, Liu WP, Zhang ZH, Huang XM, Xie A.

Zhonghua Yi Xue Za Zhi. 2006 Feb 14;86(6):403-6. Chinese.

PMID:
16677551
17.

Microporous silk fibroin scaffolds embedding PLGA microparticles for controlled growth factor delivery in tissue engineering.

Wenk E, Meinel AJ, Wildy S, Merkle HP, Meinel L.

Biomaterials. 2009 May;30(13):2571-81. doi: 10.1016/j.biomaterials.2008.12.073. Epub 2009 Jan 20.

PMID:
19157533
18.

Angiogenesis and healing with non-shrinking, fast degradeable PLGA/CaP scaffolds in critical-sized defects in the rabbit femur with or without osteogenically induced mesenchymal stem cells.

Endres S, Hiebl B, Hägele J, Beltzer C, Fuhrmann R, Jäger V, Almeida M, Costa E, Santos C, Traupe H, Jung EM, Prantl L, Jung F, Wilke A, Franke RP.

Clin Hemorheol Microcirc. 2011;48(1):29-40. doi: 10.3233/CH-2011-1406. Erratum in: Clin Hemorheol Microcirc. 2011;49(1-4);551.

PMID:
21876232
19.

Enhancement of tibial regeneration in a rat model by adipose-derived stromal cells in a PLGA scaffold.

Park BH, Zhou L, Jang KY, Park HS, Lim JM, Yoon SJ, Lee SY, Kim JR.

Bone. 2012 Sep;51(3):313-23. doi: 10.1016/j.bone.2012.05.019. Epub 2012 Jun 6.

PMID:
22684001
20.

Physicomechanical properties of sintered scaffolds formed from porous and protein-loaded poly(DL-lactic-co-glycolic acid) microspheres for potential use in bone tissue engineering.

Boukari Y, Scurr DJ, Qutachi O, Morris AP, Doughty SW, Rahman CV, Billa N.

J Biomater Sci Polym Ed. 2015;26(12):796-811. doi: 10.1080/09205063.2015.1058696. Epub 2015 Jul 2.

PMID:
26065672
Items per page

Supplemental Content

Write to the Help Desk