Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 161

Related Citations for PubMed (Select 23238262)

1.

2D to 3D crossover of the magnetic properties in ordered arrays of iron oxide nanocrystals.

Faure B, Wetterskog E, Gunnarsson K, Josten E, Hermann RP, Brückel T, Andreasen JW, Meneau F, Meyer M, Lyubartsev A, Bergström L, Salazar-Alvarez G, Svedlindh P.

Nanoscale. 2013 Feb 7;5(3):953-60. doi: 10.1039/c2nr33013j. Epub 2012 Dec 13.

PMID:
23238262
2.

Self-assembled iron oxide nanoparticle multilayer: x-ray and polarized neutron reflectivity.

Mishra D, Benitez MJ, Petracic O, Badini Confalonieri GA, Szary P, Brüssing F, Theis-Bröhl K, Devishvili A, Vorobiev A, Konovalov O, Paulus M, Sternemann C, Toperverg BP, Zabel H.

Nanotechnology. 2012 Feb 10;23(5):055707. doi: 10.1088/0957-4484/23/5/055707. Epub 2012 Jan 11.

PMID:
22236964
3.

Spacing-dependent dipolar interactions in dendronized magnetic iron oxide nanoparticle 2D arrays and powders.

Fleutot S, Nealon GL, Pauly M, Pichon BP, Leuvrey C, Drillon M, Gallani JL, Guillon D, Donnio B, Begin-Colin S.

Nanoscale. 2013 Feb 21;5(4):1507-16. doi: 10.1039/c2nr32117c.

PMID:
23306456
4.

Magnetic properties of nanocomposites formed by magnetic nanoparticles embedded in a non-magnetic matrix: a simulation approach.

Serna JC, Restrepo-Parra E, Rojas JC.

J Nanosci Nanotechnol. 2012 Jun;12(6):4979-83.

PMID:
22905562
5.

Dipolar interaction effects in the magnetic and magnetotransport properties of ordered nanoparticle arrays.

Kechrakos D, Trohidou KN.

J Nanosci Nanotechnol. 2008 Jun;8(6):2929-43.

PMID:
18681029
6.

Effect of magnetic dipolar interactions on nanoparticle heating efficiency: implications for cancer hyperthermia.

Branquinho LC, Carrião MS, Costa AS, Zufelato N, Sousa MH, Miotto R, Ivkov R, Bakuzis AF.

Sci Rep. 2013 Oct 7;3:2887. doi: 10.1038/srep02887. Erratum in: Sci Rep. 2014;4:3637.

7.

Novel complex phenomena in ferroelectric nanocomposites.

Louis L, Kornev I, Geneste G, Dkhil B, Bellaiche L.

J Phys Condens Matter. 2012 Oct 10;24(40):402201. doi: 10.1088/0953-8984/24/40/402201. Epub 2012 Sep 12.

PMID:
22968903
8.

Iron oxide nanoparticles with sizes, shapes and compositions resulting in different magnetization signatures as potential labels for multiparametric detection.

de Montferrand C, Hu L, Milosevic I, Russier V, Bonnin D, Motte L, Brioude A, Lalatonne Y.

Acta Biomater. 2013 Apr;9(4):6150-7. doi: 10.1016/j.actbio.2012.11.025. Epub 2012 Dec 1.

PMID:
23207434
9.

Learning from nature to improve the heat generation of iron-oxide nanoparticles for magnetic hyperthermia applications.

Martinez-Boubeta C, Simeonidis K, Makridis A, Angelakeris M, Iglesias O, Guardia P, Cabot A, Yedra L, Estradé S, Peiró F, Saghi Z, Midgley PA, Conde-Leborán I, Serantes D, Baldomir D.

Sci Rep. 2013;3:1652. doi: 10.1038/srep01652.

10.

Field-directed self-assembly with locking nanoparticles.

Motornov M, Malynych SZ, Pippalla DS, Zdyrko B, Royter H, Roiter Y, Kahabka M, Tokarev A, Tokarev I, Zhulina E, Kornev KG, Luzinov I, Minko S.

Nano Lett. 2012 Jul 11;12(7):3814-20. doi: 10.1021/nl301780x. Epub 2012 Jun 25.

PMID:
22716475
11.

Exchange bias effect in nanostructured magnetic oxides.

Giri SK, Nath TK.

J Nanosci Nanotechnol. 2014 Feb;14(2):1209-30. Review.

PMID:
24749423
12.

Orientation-dependent magnetic behavior in aligned nanoparticle arrays constructed by coaxial electrospinning.

Sharma N, Jaffari GH, Shah SI, Pochan DJ.

Nanotechnology. 2010 Feb 26;21(8):85707. doi: 10.1088/0957-4484/21/8/085707. Epub 2010 Jan 25.

PMID:
20097968
13.

Dipolar magnetism in ordered and disordered low-dimensional nanoparticle assemblies.

Varón M, Beleggia M, Kasama T, Harrison RJ, Dunin-Borkowski RE, Puntes VF, Frandsen C.

Sci Rep. 2013;3:1234. doi: 10.1038/srep01234. Epub 2013 Feb 6.

14.

Approaches for modeling magnetic nanoparticle dynamics.

Reeves DB, Weaver JB.

Crit Rev Biomed Eng. 2014;42(1):85-93. Review.

15.

Magnetic anisotropy considerations in magnetic force microscopy studies of single superparamagnetic nanoparticles.

Nocera TM, Chen J, Murray CB, Agarwal G.

Nanotechnology. 2012 Dec 14;23(49):495704. doi: 10.1088/0957-4484/23/49/495704. Epub 2012 Nov 13.

PMID:
23149438
16.

Fe3O4 nanoparticles: protein-mediated crystalline magnetic superstructures.

Okuda M, Eloi JC, Ward Jones SE, Sarua A, Richardson RM, Schwarzacher W.

Nanotechnology. 2012 Oct 19;23(41):415601. Epub 2012 Sep 25.

PMID:
23010993
17.

Dynamic phase transition properties and hysteretic behavior of a ferrimagnetic core-shell nanoparticle in the presence of a time dependent magnetic field.

Yüksel Y, Vatansever E, Polat H.

J Phys Condens Matter. 2012 Oct 31;24(43):436004. doi: 10.1088/0953-8984/24/43/436004. Epub 2012 Oct 4.

PMID:
23034455
18.

Degradability of superparamagnetic nanoparticles in a model of intracellular environment: follow-up of magnetic, structural and chemical properties.

Lévy M, Lagarde F, Maraloiu VA, Blanchin MG, Gendron F, Wilhelm C, Gazeau F.

Nanotechnology. 2010 Oct 1;21(39):395103. doi: 10.1088/0957-4484/21/39/395103. Epub 2010 Sep 6.

PMID:
20820094
19.

Temperature of the magnetic nanoparticle microenvironment: estimation from relaxation times.

Perreard IM, Reeves DB, Zhang X, Kuehlert E, Forauer ER, Weaver JB.

Phys Med Biol. 2014 Mar 7;59(5):1109-19. doi: 10.1088/0031-9155/59/5/1109. Epub 2014 Feb 20.

20.

Superparamagnetic state by linear and non-linear AC magnetic susceptibility in Mn0.5Zn0.5Fe2O4 ferrites nanoparticles.

Suneetha T, Kundu S, Kashyap SC, Gupta HC, Nath TK.

J Nanosci Nanotechnol. 2013 Jan;13(1):270-8.

PMID:
23646726
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk