Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 111

1.

Spectral element method and the delayed feedback control of chaos.

Tweten DJ, Mann BP.

Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Oct;86(4 Pt 2):046214. Epub 2012 Oct 31.

PMID:
23214670
[PubMed]
2.

Analytical properties and optimization of time-delayed feedback control.

Pyragas K.

Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Aug;66(2 Pt 2):026207. Epub 2002 Aug 19.

PMID:
12241267
[PubMed]
3.

Stabilizing unstable periodic orbits in the Lorenz equations using time-delayed feedback control.

Postlethwaite CM, Silber M.

Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Nov;76(5 Pt 2):056214. Epub 2007 Nov 27.

PMID:
18233746
[PubMed]
4.

Delayed feedback control of the Lorenz system: an analytical treatment at a subcritical Hopf bifurcation.

Pyragas V, Pyragas K.

Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Mar;73(3 Pt 2):036215. Epub 2006 Mar 22.

PMID:
16605639
[PubMed]
5.

Dynamics of period-doubling bifurcation to chaos in the spontaneous neural firing patterns.

Jia B, Gu H, Li L, Zhao X.

Cogn Neurodyn. 2012 Feb;6(1):89-106. doi: 10.1007/s11571-011-9184-7. Epub 2011 Dec 7.

PMID:
23372622
[PubMed]
Free PMC Article
6.

Locating unstable periodic orbits: when adaptation integrates into delayed feedback control.

Lin W, Ma H, Feng J, Chen G.

Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Oct;82(4 Pt 2):046214. Epub 2010 Oct 19.

PMID:
21230372
[PubMed - indexed for MEDLINE]
7.

Control of chaotic spatiotemporal spiking by time-delay autosynchronization.

Franceschini G, Bose S, Schöll E.

Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1999 Nov;60(5 Pt A):5426-34.

PMID:
11970414
[PubMed]
8.

Feedback control of unstable periodic orbits in equivariant Hopf bifurcation problems.

Postlethwaite CM, Brown G, Silber M.

Philos Trans A Math Phys Eng Sci. 2013 Aug 19;371(1999):20120467. doi: 10.1098/rsta.2012.0467. Print 2013 Sep 28.

PMID:
23960225
[PubMed]
9.

Tracking unstable steady states and periodic orbits of oscillatory and chaotic electrochemical systems using delayed feedback control.

Kiss IZ, Kazsu Z, Gáspár V.

Chaos. 2006 Sep;16(3):033109.

PMID:
17014214
[PubMed - indexed for MEDLINE]
10.

Chaos control by electric current in an enzymatic reaction.

Lekebusch A, Förster A, Schneider FW.

Int J Neural Syst. 1996 Sep;7(4):393-7.

PMID:
8968829
[PubMed - indexed for MEDLINE]
11.

Conversion of stability in systems close to a Hopf bifurcation by time-delayed coupling.

Choe CU, Flunkert V, Hövel P, Benner H, Schöll E.

Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Apr;75(4 Pt 2):046206. Epub 2007 Apr 11.

PMID:
17500977
[PubMed]
12.

Time-averaged properties of unstable periodic orbits and chaotic orbits in ordinary differential equation systems.

Saiki Y, Yamada M.

Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Jan;79(1 Pt 2):015201. Epub 2009 Jan 5.

PMID:
19257096
[PubMed]
13.

Beyond the odd number limitation: a bifurcation analysis of time-delayed feedback control.

Just W, Fiedler B, Georgi M, Flunkert V, Hövel P, Schöll E.

Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Aug;76(2 Pt 2):026210. Epub 2007 Aug 15.

PMID:
17930124
[PubMed]
14.

Delayed feedback control of forced self-sustained oscillations.

Pyragiene T, Pyragas K.

Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Aug;72(2 Pt 2):026203. Epub 2005 Aug 3.

PMID:
16196680
[PubMed]
15.

Control of unstable steady states by extended time-delayed feedback.

Dahms T, Hövel P, Schöll E.

Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Nov;76(5 Pt 2):056201. Epub 2007 Nov 1.

PMID:
18233733
[PubMed]
16.

Statistics of unstable periodic orbits of a chaotic dynamical system with a large number of degrees of freedom.

Kawasaki M, Sasa S.

Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Sep;72(3 Pt 2):037202. Epub 2005 Sep 8.

PMID:
16241619
[PubMed]
17.

Domain of attraction for stabilized orbits in time delayed feedback controlled Duffing systems.

Yamasue K, Hikihara T.

Phys Rev E Stat Nonlin Soft Matter Phys. 2004 May;69(5 Pt 2):056209. Epub 2004 May 17. Erratum in: Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Jun;69(6 PT 2):069902.

PMID:
15244906
[PubMed]
18.

Refuting the odd-number limitation of time-delayed feedback control.

Fiedler B, Flunkert V, Georgi M, Hövel P, Schöll E.

Phys Rev Lett. 2007 Mar 16;98(11):114101. Epub 2007 Mar 14.

PMID:
17501057
[PubMed]
19.

Lyapunov exponents from unstable periodic orbits.

Franzosi R, Poggi P, Cerruti-Sola M.

Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Mar;71(3 Pt 2A):036218. Epub 2005 Mar 21.

PMID:
15903557
[PubMed]
20.

Controlled destruction of chaos in the multistable regime.

Goswami BK.

Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Jul;76(1 Pt 2):016219. Epub 2007 Jul 31.

PMID:
17677555
[PubMed]

Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk