Format
Items per page
Sort by

Send to:

Choose Destination

Links from PubMed

Items: 1 to 20 of 188

1.

The genetic basis of natural variation in oenological traits in Saccharomyces cerevisiae.

Salinas F, Cubillos FA, Soto D, Garcia V, Bergström A, Warringer J, Ganga MA, Louis EJ, Liti G, Martinez C.

PLoS One. 2012;7(11):e49640. doi: 10.1371/journal.pone.0049640. Epub 2012 Nov 21.

2.

Mapping genetic variants underlying differences in the central nitrogen metabolism in fermenter yeasts.

Jara M, Cubillos FA, García V, Salinas F, Aguilera O, Liti G, Martínez C.

PLoS One. 2014 Jan 21;9(1):e86533. doi: 10.1371/journal.pone.0086533. eCollection 2014.

3.

Differential adaptation to multi-stressed conditions of wine fermentation revealed by variations in yeast regulatory networks.

Brion C, Ambroset C, Sanchez I, Legras JL, Blondin B.

BMC Genomics. 2013 Oct 4;14:681. doi: 10.1186/1471-2164-14-681.

4.

The genetic basis of variation in clean lineages of Saccharomyces cerevisiae in response to stresses encountered during bioethanol fermentations.

Greetham D, Wimalasena TT, Leung K, Marvin ME, Chandelia Y, Hart AJ, Phister TG, Tucker GA, Louis EJ, Smart KA.

PLoS One. 2014 Aug 12;9(8):e103233. doi: 10.1371/journal.pone.0103233. eCollection 2014. Erratum in: PLoS One. 2015;10(3):e0119343.

5.

Genetic stabilization of Saccharomyces cerevisiae oenological strains by using benomyl.

Blasco L, Feijoo-Siota L, Veiga-Crespo P, Villa TG.

Int Microbiol. 2008 Jun;11(2):127-32.

PMID:
18645963
6.

QTL analysis of high thermotolerance with superior and downgraded parental yeast strains reveals new minor QTLs and converges on novel causative alleles involved in RNA processing.

Yang Y, Foulquié-Moreno MR, Clement L, Erdei E, Tanghe A, Schaerlaekens K, Dumortier F, Thevelein JM.

PLoS Genet. 2013;9(8):e1003693. doi: 10.1371/journal.pgen.1003693. Epub 2013 Aug 15.

7.

Comparative transcriptomic approach to investigate differences in wine yeast physiology and metabolism during fermentation.

Rossouw D, Olivares-Hernandes R, Nielsen J, Bauer FF.

Appl Environ Microbiol. 2009 Oct;75(20):6600-12. doi: 10.1128/AEM.01251-09. Epub 2009 Aug 21.

9.

Comparative genomic analysis of Saccharomyces cerevisiae yeasts isolated from fermentations of traditional beverages unveils different adaptive strategies.

Ibáñez C, Pérez-Torrado R, Chiva R, Guillamón JM, Barrio E, Querol A.

Int J Food Microbiol. 2014 Feb 3;171:129-35. doi: 10.1016/j.ijfoodmicro.2013.10.023. Epub 2013 Nov 4.

PMID:
24334254
10.

Single QTL mapping and nucleotide-level resolution of a physiologic trait in wine Saccharomyces cerevisiae strains.

Marullo P, Aigle M, Bely M, Masneuf-Pomarède I, Durrens P, Dubourdieu D, Yvert G.

FEMS Yeast Res. 2007 Sep;7(6):941-52. Epub 2007 May 31.

11.

Evidence of different fermentation behaviours of two indigenous strains of Saccharomyces cerevisiae and Saccharomyces uvarum isolated from Amarone wine.

Tosi E, Azzolini M, Guzzo F, Zapparoli G.

J Appl Microbiol. 2009 Jul;107(1):210-8. doi: 10.1111/j.1365-2672.2009.04196.x. Epub 2009 Feb 25.

12.

Assessing the complex architecture of polygenic traits in diverged yeast populations.

Cubillos FA, Billi E, Zörgö E, Parts L, Fargier P, Omholt S, Blomberg A, Warringer J, Louis EJ, Liti G.

Mol Ecol. 2011 Apr;20(7):1401-13. doi: 10.1111/j.1365-294X.2011.05005.x. Epub 2011 Jan 25.

PMID:
21261765
13.

Comparative evaluation of some oenological properties in wine strains of Candida stellata, Candida zemplinina, Saccharomyces uvarum and Saccharomyces cerevisiae.

Magyar I, Tóth T.

Food Microbiol. 2011 Feb;28(1):94-100. doi: 10.1016/j.fm.2010.08.011. Epub 2010 Sep 22.

PMID:
21056780
14.

Candida zemplinina can reduce acetic acid produced by Saccharomyces cerevisiae in sweet wine fermentations.

Rantsiou K, Dolci P, Giacosa S, Torchio F, Tofalo R, Torriani S, Suzzi G, Rolle L, Cocolin L.

Appl Environ Microbiol. 2012 Mar;78(6):1987-94. doi: 10.1128/AEM.06768-11. Epub 2012 Jan 13.

15.

QTL mapping of sake brewing characteristics of yeast.

Katou T, Namise M, Kitagaki H, Akao T, Shimoi H.

J Biosci Bioeng. 2009 Apr;107(4):383-93. doi: 10.1016/j.jbiosc.2008.12.014.

PMID:
19332297
16.

Comparative polygenic analysis of maximal ethanol accumulation capacity and tolerance to high ethanol levels of cell proliferation in yeast.

Pais TM, Foulquié-Moreno MR, Hubmann G, Duitama J, Swinnen S, Goovaerts A, Yang Y, Dumortier F, Thevelein JM.

PLoS Genet. 2013 Jun;9(6):e1003548. doi: 10.1371/journal.pgen.1003548. Epub 2013 Jun 6.

17.

Enological characterization of natural hybrids from Saccharomyces cerevisiae and S. kudriavzevii.

González SS, Gallo L, Climent MA, Barrio E, Querol A.

Int J Food Microbiol. 2007 May 1;116(1):11-8. Epub 2007 Jan 13.

PMID:
17346840
18.

A recombinant Saccharomyces cerevisiae strain overproducing mannoproteins stabilizes wine against protein haze.

Gonzalez-Ramos D, Cebollero E, Gonzalez R.

Appl Environ Microbiol. 2008 Sep;74(17):5533-40. doi: 10.1128/AEM.00302-08. Epub 2008 Jul 7.

19.

Outlining a future for non-Saccharomyces yeasts: selection of putative spoilage wine strains to be used in association with Saccharomyces cerevisiae for grape juice fermentation.

Domizio P, Romani C, Lencioni L, Comitini F, Gobbi M, Mannazzu I, Ciani M.

Int J Food Microbiol. 2011 Jun 30;147(3):170-80. doi: 10.1016/j.ijfoodmicro.2011.03.020. Epub 2011 Apr 7.

PMID:
21531033
20.
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk