Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 179

1.

Alternative bacterial two-component small heat shock protein systems.

Bepperling A, Alte F, Kriehuber T, Braun N, Weinkauf S, Groll M, Haslbeck M, Buchner J.

Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):20407-12. doi: 10.1073/pnas.1209565109. Epub 2012 Nov 26.

2.

Substrate binding site flexibility of the small heat shock protein molecular chaperones.

Jaya N, Garcia V, Vierling E.

Proc Natl Acad Sci U S A. 2009 Sep 15;106(37):15604-9. doi: 10.1073/pnas.0902177106. Epub 2009 Aug 26.

3.

Multilevel structural characteristics for the natural substrate proteins of bacterial small heat shock proteins.

Fu X, Chang Z, Shi X, Bu D, Wang C.

Protein Sci. 2014 Feb;23(2):229-37. doi: 10.1002/pro.2404. Epub 2013 Dec 16.

4.

Crystal structures of Xanthomonas small heat shock protein provide a structural basis for an active molecular chaperone oligomer.

Hilario E, Martin FJ, Bertolini MC, Fan L.

J Mol Biol. 2011 Apr 22;408(1):74-86. doi: 10.1016/j.jmb.2011.02.004. Epub 2011 Feb 15.

5.

An unusual dimeric small heat shock protein provides insight into the mechanism of this class of chaperones.

Basha E, Jones C, Blackwell AE, Cheng G, Waters ER, Samsel KA, Siddique M, Pett V, Wysocki V, Vierling E.

J Mol Biol. 2013 May 27;425(10):1683-96. doi: 10.1016/j.jmb.2013.02.011. Epub 2013 Feb 14.

6.

Wrapping the alpha-crystallin domain fold in a chaperone assembly.

Stamler R, Kappé G, Boelens W, Slingsby C.

J Mol Biol. 2005 Oct 14;353(1):68-79.

PMID:
16165157
8.

The Chaperone Activity of the Developmental Small Heat Shock Protein Sip1 Is Regulated by pH-Dependent Conformational Changes.

Fleckenstein T, Kastenmüller A, Stein ML, Peters C, Daake M, Krause M, Weinfurtner D, Haslbeck M, Weinkauf S, Groll M, Buchner J.

Mol Cell. 2015 Jun 18;58(6):1067-78. doi: 10.1016/j.molcel.2015.04.019. Epub 2015 May 22.

9.

Quaternary dynamics and plasticity underlie small heat shock protein chaperone function.

Stengel F, Baldwin AJ, Painter AJ, Jaya N, Basha E, Kay LE, Vierling E, Robinson CV, Benesch JL.

Proc Natl Acad Sci U S A. 2010 Feb 2;107(5):2007-12. doi: 10.1073/pnas.0910126107. Epub 2010 Jan 19.

10.

A model for heterooligomer formation in the heat shock response of Escherichia coli.

Healy EF.

Biochem Biophys Res Commun. 2012 Apr 13;420(3):639-43. doi: 10.1016/j.bbrc.2012.03.054. Epub 2012 Mar 17.

PMID:
22450329
11.

The mammalian small heat-shock protein Hsp20 forms dimers and is a poor chaperone.

van de Klundert FA, Smulders RH, Gijsen ML, Lindner RA, Jaenicke R, Carver JA, de Jong WW.

Eur J Biochem. 1998 Dec 15;258(3):1014-21.

12.

Inhibition of citrate synthase thermal aggregation in vitro by recombinant small heat shock proteins.

Gong W, Yue M, Xie B, Wan F, Guo J.

J Microbiol Biotechnol. 2009 Dec;19(12):1628-34.

13.

Differential degradation for small heat shock proteins IbpA and IbpB is synchronized in Escherichia coli: implications for their functional cooperation in substrate refolding.

Shi X, Yan L, Zhang H, Sun K, Chang Z, Fu X.

Biochem Biophys Res Commun. 2014 Sep 26;452(3):402-7. doi: 10.1016/j.bbrc.2014.08.084. Epub 2014 Aug 28.

PMID:
25173932
14.

Chaperone-like activity of alpha-crystallin and other small heat shock proteins.

Ganea E.

Curr Protein Pept Sci. 2001 Sep;2(3):205-25. Review.

PMID:
12369933
15.

Microbial small heat shock proteins and their use in biotechnology.

Han MJ, Yun H, Lee SY.

Biotechnol Adv. 2008 Nov-Dec;26(6):591-609. doi: 10.1016/j.biotechadv.2008.08.004. Epub 2008 Aug 22. Review.

PMID:
18789382
16.

The small heat shock protein IbpA of Escherichia coli cooperates with IbpB in stabilization of thermally aggregated proteins in a disaggregation competent state.

Matuszewska M, Kuczyńska-Wiśnik D, Laskowska E, Liberek K.

J Biol Chem. 2005 Apr 1;280(13):12292-8. Epub 2005 Jan 22.

17.

One size does not fit all: the oligomeric states of αB crystallin.

Delbecq SP, Klevit RE.

FEBS Lett. 2013 Apr 17;587(8):1073-80. doi: 10.1016/j.febslet.2013.01.021. Epub 2013 Jan 20. Review.

18.

Heat causes oligomeric disassembly and increases the chaperone activity of small heat shock proteins from sugarcane.

Tiroli-Cepeda AO, Ramos CH.

Plant Physiol Biochem. 2010 Feb-Mar;48(2-3):108-16. doi: 10.1016/j.plaphy.2010.01.001. Epub 2010 Jan 15.

PMID:
20137963
19.

Small heat shock protein AgsA forms dynamic fibrils.

Shi X, Wang Z, Yan L, Ezemaduka AN, Fan G, Wang R, Fu X, Yin C, Chang Z.

FEBS Lett. 2011 Nov 4;585(21):3396-402. doi: 10.1016/j.febslet.2011.09.042. Epub 2011 Oct 12.

20.

Regions outside the alpha-crystallin domain of the small heat shock protein Hsp26 are required for its dimerization.

Chen J, Feige MJ, Franzmann TM, Bepperling A, Buchner J.

J Mol Biol. 2010 Apr 23;398(1):122-31. doi: 10.1016/j.jmb.2010.02.022. Epub 2010 Feb 18.

PMID:
20171228
Items per page

Supplemental Content

Write to the Help Desk