Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 106

1.

A ribosome-bound quality control complex triggers degradation of nascent peptides and signals translation stress.

Brandman O, Stewart-Ornstein J, Wong D, Larson A, Williams CC, Li GW, Zhou S, King D, Shen PS, Weibezahn J, Dunn JG, Rouskin S, Inada T, Frost A, Weissman JS.

Cell. 2012 Nov 21;151(5):1042-54. doi: 10.1016/j.cell.2012.10.044.

2.

Cdc48-associated complex bound to 60S particles is required for the clearance of aberrant translation products.

Defenouillère Q, Yao Y, Mouaikel J, Namane A, Galopier A, Decourty L, Doyen A, Malabat C, Saveanu C, Jacquier A, Fromont-Racine M.

Proc Natl Acad Sci U S A. 2013 Mar 26;110(13):5046-51. doi: 10.1073/pnas.1221724110. Epub 2013 Mar 11.

3.

Structural basis for translational surveillance by the large ribosomal subunit-associated protein quality control complex.

Lyumkis D, Oliveira dos Passos D, Tahara EB, Webb K, Bennett EJ, Vinterbo S, Potter CS, Carragher B, Joazeiro CA.

Proc Natl Acad Sci U S A. 2014 Nov 11;111(45):15981-6. doi: 10.1073/pnas.1413882111. Epub 2014 Oct 27.

4.

Protein quality control systems associated with no-go and nonstop mRNA surveillance in yeast.

Matsuda R, Ikeuchi K, Nomura S, Inada T.

Genes Cells. 2014 Jan;19(1):1-12. doi: 10.1111/gtc.12106. Epub 2013 Nov 21.

5.

Failure of RQC machinery causes protein aggregation and proteotoxic stress.

Choe YJ, Park SH, Hassemer T, Körner R, Vincenz-Donnelly L, Hayer-Hartl M, Hartl FU.

Nature. 2016 Mar 10;531(7593):191-5. doi: 10.1038/nature16973. Epub 2016 Feb 29.

PMID:
26934223
6.

Role of a ribosome-associated E3 ubiquitin ligase in protein quality control.

Bengtson MH, Joazeiro CA.

Nature. 2010 Sep 23;467(7314):470-3. doi: 10.1038/nature09371. Epub 2010 Sep 12.

7.

Nuclear import factor Srp1 and its associated protein Sts1 couple ribosome-bound nascent polypeptides to proteasomes for cotranslational degradation.

Ha SW, Ju D, Xie Y.

J Biol Chem. 2014 Jan 31;289(5):2701-10. doi: 10.1074/jbc.M113.524926. Epub 2013 Dec 12.

8.

Rqc1 and Ltn1 Prevent C-terminal Alanine-Threonine Tail (CAT-tail)-induced Protein Aggregation by Efficient Recruitment of Cdc48 on Stalled 60S Subunits.

Defenouillère Q, Zhang E, Namane A, Mouaikel J, Jacquier A, Fromont-Racine M.

J Biol Chem. 2016 Jun 3;291(23):12245-53. doi: 10.1074/jbc.M116.722264. Epub 2016 Apr 18.

PMID:
27129255
9.

Ribosome association and stability of the nascent polypeptide-associated complex is dependent upon its own ubiquitination.

Panasenko OO, David FP, Collart MA.

Genetics. 2009 Feb;181(2):447-60. doi: 10.1534/genetics.108.095422. Epub 2008 Dec 15.

10.

The ribosome quality control pathway can access nascent polypeptides stalled at the Sec61 translocon.

von der Malsburg K, Shao S, Hegde RS.

Mol Biol Cell. 2015 Jun 15;26(12):2168-80. doi: 10.1091/mbc.E15-01-0040. Epub 2015 Apr 15.

11.

A conserved protein with AN1 zinc finger and ubiquitin-like domains modulates Cdc48 (p97) function in the ubiquitin-proteasome pathway.

Sá-Moura B, Funakoshi M, Tomko RJ Jr, Dohmen RJ, Wu Z, Peng J, Hochstrasser M.

J Biol Chem. 2013 Nov 22;288(47):33682-96. doi: 10.1074/jbc.M113.521088. Epub 2013 Oct 11.

12.

Ribosome-associated complex and Ssb are required for translational repression induced by polylysine segments within nascent chains.

Chiabudini M, Conz C, Reckmann F, Rospert S.

Mol Cell Biol. 2012 Dec;32(23):4769-79. doi: 10.1128/MCB.00809-12. Epub 2012 Sep 24.

13.

Rsp5 is required for the nuclear export of mRNA of HSF1 and MSN2/4 under stress conditions in Saccharomyces cerevisiae.

Haitani Y, Takagi H.

Genes Cells. 2008 Feb;13(2):105-16. doi: 10.1111/j.1365-2443.2007.01154.x.

14.

40S subunit dissociation and proteasome-dependent RNA degradation in nonfunctional 25S rRNA decay.

Fujii K, Kitabatake M, Sakata T, Ohno M.

EMBO J. 2012 May 30;31(11):2579-89. doi: 10.1038/emboj.2012.85. Epub 2012 Apr 13.

15.

The budding yeast Cdc48(Shp1) complex promotes cell cycle progression by positive regulation of protein phosphatase 1 (Glc7).

Böhm S, Buchberger A.

PLoS One. 2013;8(2):e56486. doi: 10.1371/journal.pone.0056486. Epub 2013 Feb 13.

16.

Inhibiting K63 polyubiquitination abolishes no-go type stalled translation surveillance in Saccharomyces cerevisiae.

Saito K, Horikawa W, Ito K.

PLoS Genet. 2015 Apr 24;11(4):e1005197. doi: 10.1371/journal.pgen.1005197. eCollection 2015 Apr.

17.

The cotranslational function of ribosome-associated Hsp70 in eukaryotic protein homeostasis.

Willmund F, del Alamo M, Pechmann S, Chen T, Albanèse V, Dammer EB, Peng J, Frydman J.

Cell. 2013 Jan 17;152(1-2):196-209. doi: 10.1016/j.cell.2012.12.001.

18.

Principles of cotranslational ubiquitination and quality control at the ribosome.

Duttler S, Pechmann S, Frydman J.

Mol Cell. 2013 May 9;50(3):379-93. doi: 10.1016/j.molcel.2013.03.010. Epub 2013 Apr 11.

19.

Release factor eRF3 mediates premature translation termination on polylysine-stalled ribosomes in Saccharomyces cerevisiae.

Chiabudini M, Tais A, Zhang Y, Hayashi S, Wölfle T, Fitzke E, Rospert S.

Mol Cell Biol. 2014 Nov;34(21):4062-76. doi: 10.1128/MCB.00799-14. Epub 2014 Aug 25.

20.

Cdc48/p97 promotes degradation of aberrant nascent polypeptides bound to the ribosome.

Verma R, Oania RS, Kolawa NJ, Deshaies RJ.

Elife. 2013 Jan 22;2:e00308. doi: 10.7554/eLife.00308.

Items per page

Supplemental Content

Write to the Help Desk