Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 266

Similar articles for PubMed (Select 23172978)

1.

Variational multiscale models for charge transport.

Wei GW, Zheng Q, Chen Z, Xia K.

SIAM Rev Soc Ind Appl Math. 2012;54(4):699-754. Epub 2012 Nov 8.

2.

Multiscale Multiphysics and Multidomain Models I: Basic Theory.

Wei GW.

J Theor Comput Chem. 2013 Dec;12(8). doi: 10.1142/S021963361341006X.

3.

Poisson-Boltzmann-Nernst-Planck model.

Zheng Q, Wei GW.

J Chem Phys. 2011 May 21;134(19):194101. doi: 10.1063/1.3581031.

4.

Quantum dynamics in continuum for proton transport II: Variational solvent-solute interface.

Chen D, Chen Z, Wei GW.

Int J Numer Method Biomed Eng. 2012 Jan;28(1):25-51. doi: 10.1002/cnm.1458. Epub 2011 Aug 9.

5.

Differential geometry based multiscale models.

Wei GW.

Bull Math Biol. 2010 Aug;72(6):1562-622. doi: 10.1007/s11538-010-9511-x. Epub 2010 Feb 19.

6.

Differential geometry based solvation model. III. Quantum formulation.

Chen Z, Wei GW.

J Chem Phys. 2011 Nov 21;135(19):194108. doi: 10.1063/1.3660212.

7.

Quantum Dynamics in Continuum for Proton Transport I: Basic Formulation.

Chen D, Wei GW.

Commun Comput Phys. 2013 Jan 1;13(1):285-324. Epub 2012 Jun 12.

8.

Differential geometry based solvation model II: Lagrangian formulation.

Chen Z, Baker NA, Wei GW.

J Math Biol. 2011 Dec;63(6):1139-200. doi: 10.1007/s00285-011-0402-z. Epub 2011 Jan 30.

9.

Quantum dynamics in continuum for proton transport--generalized correlation.

Chen D, Wei GW.

J Chem Phys. 2012 Apr 7;136(13):134109. doi: 10.1063/1.3698598.

10.

Derivation of Poisson and Nernst-Planck equations in a bath and channel from a molecular model.

Schuss Z, Nadler B, Eisenberg RS.

Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Sep;64(3 Pt 2):036116. Epub 2001 Aug 28.

PMID:
11580403
11.

Energy variational analysis of ions in water and channels: Field theory for primitive models of complex ionic fluids.

Eisenberg B, Hyon Y, Liu C.

J Chem Phys. 2010 Sep 14;133(10):104104. doi: 10.1063/1.3476262.

12.

Second-order Poisson Nernst-Planck solver for ion channel transport.

Zheng Q, Chen D, Wei GW.

J Comput Phys. 2011 Jun;230(13):5239-5262.

13.
14.
16.

A perspective on streaming current in silica nanofluidic channels: Poisson-Boltzmann model versus Poisson-Nernst-Planck model.

Chang CC, Yang RJ.

J Colloid Interface Sci. 2009 Nov 15;339(2):517-20. doi: 10.1016/j.jcis.2009.07.056. Epub 2009 Jul 28.

PMID:
19712936
17.
18.

A parallel finite element simulator for ion transport through three-dimensional ion channel systems.

Tu B, Chen M, Xie Y, Zhang L, Eisenberg B, Lu B.

J Comput Chem. 2013 Sep 15;34(24):2065-78. doi: 10.1002/jcc.23329. Epub 2013 Jun 5.

PMID:
23740647
19.

PNP equations with steric effects: a model of ion flow through channels.

Horng TL, Lin TC, Liu C, Eisenberg B.

J Phys Chem B. 2012 Sep 20;116(37):11422-41. Epub 2012 Sep 10.

PMID:
22900604
20.

Differential geometry based solvation model I: Eulerian formulation.

Chen Z, Baker NA, Wei GW.

J Comput Phys. 2010 Nov 1;229(22):8231-8258.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk