Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 130

1.

Pilot-scale demonstration of the hybrid zero-valent iron process for treating flue-gas-desulfurization wastewater: part II.

Huang YH, Peddi PK, Zeng H, Tang CL, Teng X.

Water Sci Technol. 2013;67(2):239-46. doi: 10.2166/wst.2012.447.

PMID:
23168619
[PubMed - indexed for MEDLINE]
2.

Pilot-scale demonstration of the hybrid zero-valent iron process for treating flue-gas-desulfurization wastewater: part I.

Huang YH, Peddi PK, Zeng H, Tang CL, Teng X.

Water Sci Technol. 2013;67(1):16-23. doi: 10.2166/wst.2012.446.

PMID:
23128616
[PubMed - indexed for MEDLINE]
3.

Precipitation of heavy metals from coal ash leachate using biogenic hydrogen sulfide generated from FGD gypsum.

Jayaranjan ML, Annachhatre AP.

Water Sci Technol. 2013;67(2):311-8. doi: 10.2166/wst.2012.546.

PMID:
23168629
[PubMed - indexed for MEDLINE]
4.

Enhanced chitosan beads-supported Fe(0)-nanoparticles for removal of heavy metals from electroplating wastewater in permeable reactive barriers.

Liu T, Yang X, Wang ZL, Yan X.

Water Res. 2013 Nov 1;47(17):6691-700. doi: 10.1016/j.watres.2013.09.006. Epub 2013 Sep 14.

PMID:
24075723
[PubMed - indexed for MEDLINE]
5.

[Synchronous treatment of heavy metal ions and nitrate by zero-valent iron].

Zhang Z, Hao ZW, Liu WL, Xu XH.

Huan Jing Ke Xue. 2009 Mar 15;30(3):775-9. Chinese.

PMID:
19432327
[PubMed - indexed for MEDLINE]
6.

An integrated electro-chemical and natural treatment system for industrial water pollution control.

Polprasert C, Sharma K, Koottatep T.

Water Sci Technol. 2005;52(12):1-8.

PMID:
16477965
[PubMed - indexed for MEDLINE]
7.

Nanoscale zero-valent iron (nZVI) for the treatment of concentrated Cu(II) wastewater: a field demonstration.

Li S, Wang W, Yan W, Zhang WX.

Environ Sci Process Impacts. 2014 Mar;16(3):524-33. doi: 10.1039/c3em00578j. Epub 2014 Jan 29.

PMID:
24473735
[PubMed - indexed for MEDLINE]
8.

Heavy metal removal from wastewater using zero-valent iron nanoparticles.

Chen SY, Chen WH, Shih CJ.

Water Sci Technol. 2008;58(10):1947-54. doi: 10.2166/wst.2008.556.

PMID:
19039174
[PubMed - indexed for MEDLINE]
9.

Feasibility of constructed wetland planted with Leersia hexandra Swartz for removing Cr, Cu and Ni from electroplating wastewater.

You SH, Zhang XH, Liu J, Zhu YN, Gu C.

Environ Technol. 2014 Jan-Feb;35(1-4):187-94.

PMID:
24600856
[PubMed - indexed for MEDLINE]
10.

Selective removal of heavy metals from metal-bearing wastewater in a cascade line reactor.

Pavlović J, Stopić S, Friedrich B, Kamberović Z.

Environ Sci Pollut Res Int. 2007 Nov;14(7):518-22.

PMID:
18062485
[PubMed - indexed for MEDLINE]
11.

Total contents and sequential extraction of heavy metals in soils irrigated with wastewater, Akaki, Ethiopia.

Fitamo D, Itana F, Olsson M.

Environ Manage. 2007 Feb;39(2):178-93. Epub 2006 Dec 8.

PMID:
17160509
[PubMed - indexed for MEDLINE]
12.

Comparisons of low-cost adsorbents for treating wastewaters laden with heavy metals.

Kurniawan TA, Chan GY, Lo WH, Babel S.

Sci Total Environ. 2006 Aug 1;366(2-3):409-26. Epub 2005 Nov 21. Review.

PMID:
16300818
[PubMed - indexed for MEDLINE]
13.

Simultaneous precipitation of phosphorus in a kraft pulp mill wastewater treatment plant.

Toivakainen S, Laukkanen T, Dahl O.

Water Sci Technol. 2013;67(2):299-305. doi: 10.2166/wst.2012.522.

PMID:
23168627
[PubMed - indexed for MEDLINE]
14.

Pilot scale study on the ex situ electrokinetic removal of heavy metals from municipal wastewater sludges.

Kim SO, Moon SH, Kim KW, Yun ST.

Water Res. 2002 Nov;36(19):4765-74.

PMID:
12448519
[PubMed - indexed for MEDLINE]
15.

Retention of 2,4,6-trinitrotoluene and heavy metals from industrial waste water by using the low cost adsorbent pine bark in a batch experiment.

Nehrenheim E, Odlare M, Allard B.

Water Sci Technol. 2011;64(10):2052-8. doi: 10.2166/wst.2011.603.

PMID:
22105128
[PubMed - indexed for MEDLINE]
16.

Use of constructed wetland for the removal of heavy metals from industrial wastewater.

Khan S, Ahmad I, Shah MT, Rehman S, Khaliq A.

J Environ Manage. 2009 Aug;90(11):3451-7. doi: 10.1016/j.jenvman.2009.05.026. Epub 2009 Jun 17.

PMID:
19535201
[PubMed - indexed for MEDLINE]
17.

Biosorption of heavy metals from industrial waste water by Geobacillus thermodenitrificans.

Chatterjee SK, Bhattacharjee I, Chandra G.

J Hazard Mater. 2010 Mar 15;175(1-3):117-25. doi: 10.1016/j.jhazmat.2009.09.136. Epub 2009 Oct 6.

PMID:
19864059
[PubMed - indexed for MEDLINE]
18.

Laboratory evaluation of zero-valent iron to treat water impacted by acid mine drainage.

Wilkin RT, McNeil MS.

Chemosphere. 2003 Nov;53(7):715-25.

PMID:
13129511
[PubMed - indexed for MEDLINE]
19.

A fuel-cell-assisted iron redox process for simultaneous sulfur recovery and electricity production from synthetic sulfide wastewater.

Zhai LF, Song W, Tong ZH, Sun M.

J Hazard Mater. 2012 Dec;243:350-6. doi: 10.1016/j.jhazmat.2012.10.046. Epub 2012 Nov 2.

PMID:
23149300
[PubMed - indexed for MEDLINE]
20.

Pilot-scale removal of chromium from industrial wastewater using the ChromeBac system.

Ahmad WA, Zakaria ZA, Khasim AR, Alias MA, Ismail SM.

Bioresour Technol. 2010 Jun;101(12):4371-8. doi: 10.1016/j.biortech.2010.01.106. Epub 2010 Feb 25.

PMID:
20185301
[PubMed - indexed for MEDLINE]

Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk