Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 135

1.

Heat stress activates the Akt/mTOR signalling pathway in rat skeletal muscle.

Yoshihara T, Naito H, Kakigi R, Ichinoseki-Sekine N, Ogura Y, Sugiura T, Katamoto S.

Acta Physiol (Oxf). 2013 Feb;207(2):416-26. doi: 10.1111/apha.12040. Epub 2012 Dec 14.

PMID:
23167446
2.

Acute heat stress prior to downhill running may enhance skeletal muscle remodeling.

Touchberry CD, Gupte AA, Bomhoff GL, Graham ZA, Geiger PC, Gallagher PM.

Cell Stress Chaperones. 2012 Nov;17(6):693-705. doi: 10.1007/s12192-012-0343-5. Epub 2012 May 17.

3.

Heat stress enhances mTOR signaling after resistance exercise in human skeletal muscle.

Kakigi R, Naito H, Ogura Y, Kobayashi H, Saga N, Ichinoseki-Sekine N, Yoshihara T, Katamoto S.

J Physiol Sci. 2011 Mar;61(2):131-40. doi: 10.1007/s12576-010-0130-y. Epub 2011 Jan 11.

PMID:
21222186
4.

Altered regulation of contraction-induced Akt/mTOR/p70S6k pathway signaling in skeletal muscle of the obese Zucker rat.

Katta A, Kakarla S, Wu M, Paturi S, Gadde MK, Arvapalli R, Kolli M, Rice KM, Blough ER.

Exp Diabetes Res. 2009;2009:384683. doi: 10.1155/2009/384683. Epub 2010 Mar 30.

5.

Whey protein intake after resistance exercise activates mTOR signaling in a dose-dependent manner in human skeletal muscle.

Kakigi R, Yoshihara T, Ozaki H, Ogura Y, Ichinoseki-Sekine N, Kobayashi H, Naito H.

Eur J Appl Physiol. 2014 Apr;114(4):735-42. doi: 10.1007/s00421-013-2812-7. Epub 2014 Jan 3.

PMID:
24384983
6.

Differential activation of mTOR signaling by contractile activity in skeletal muscle.

Parkington JD, Siebert AP, LeBrasseur NK, Fielding RA.

Am J Physiol Regul Integr Comp Physiol. 2003 Nov;285(5):R1086-90. Epub 2003 Jul 24.

7.

Sprint exercise enhances skeletal muscle p70S6k phosphorylation and more so in women than in men.

Esbjörnsson M, Rundqvist HC, Mascher H, Österlund T, Rooyackers O, Blomstrand E, Jansson E.

Acta Physiol (Oxf). 2012 Jul;205(3):411-22. doi: 10.1111/j.1748-1716.2012.02404.x. Epub 2012 Jan 23.

PMID:
22268492
8.

Hypoxia transiently affects skeletal muscle hypertrophy in a functional overload model.

Chaillou T, Koulmann N, Simler N, Meunier A, Serrurier B, Chapot R, Peinnequin A, Beaudry M, Bigard X.

Am J Physiol Regul Integr Comp Physiol. 2012 Mar 1;302(5):R643-54. doi: 10.1152/ajpregu.00262.2011. Epub 2011 Dec 21.

9.
10.

Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo.

Bodine SC, Stitt TN, Gonzalez M, Kline WO, Stover GL, Bauerlein R, Zlotchenko E, Scrimgeour A, Lawrence JC, Glass DJ, Yancopoulos GD.

Nat Cell Biol. 2001 Nov;3(11):1014-9.

PMID:
11715023
11.

Immediate response of mammalian target of rapamycin (mTOR)-mediated signalling following acute resistance exercise in rat skeletal muscle.

Bolster DR, Kubica N, Crozier SJ, Williamson DL, Farrell PA, Kimball SR, Jefferson LS.

J Physiol. 2003 Nov 15;553(Pt 1):213-20. Epub 2003 Aug 22.

12.

Electrostimulation during hindlimb unloading modulates PI3K-AKT downstream targets without preventing soleus atrophy and restores slow phenotype through ERK.

Dupont E, Cieniewski-Bernard C, Bastide B, Stevens L.

Am J Physiol Regul Integr Comp Physiol. 2011 Feb;300(2):R408-17. doi: 10.1152/ajpregu.00793.2009. Epub 2010 Nov 24.

13.

Heat stress-induced phosphorylation of FoxO3a signalling in rat skeletal muscle.

Yoshihara T, Kobayashi H, Kakigi R, Sugiura T, Naito H.

Acta Physiol (Oxf). 2016 Jun 16. doi: 10.1111/apha.12735. [Epub ahead of print]

PMID:
27306326
14.

Akt signalling through GSK-3beta, mTOR and Foxo1 is involved in human skeletal muscle hypertrophy and atrophy.

Léger B, Cartoni R, Praz M, Lamon S, Dériaz O, Crettenand A, Gobelet C, Rohmer P, Konzelmann M, Luthi F, Russell AP.

J Physiol. 2006 Nov 1;576(Pt 3):923-33. Epub 2006 Aug 17.

15.

Muscle type-specific response of HSP60, HSP72, and HSC73 during recovery after elevation of muscle temperature.

Oishi Y, Taniguchi K, Matsumoto H, Ishihara A, Ohira Y, Roy RR.

J Appl Physiol (1985). 2002 Mar;92(3):1097-103.

16.

Rheb, an activator of target of rapamycin, in the blackback land crab, Gecarcinus lateralis: cloning and effects of molting and unweighting on expression in skeletal muscle.

MacLea KS, Abuhagr AM, Pitts NL, Covi JA, Bader BD, Chang ES, Mykles DL.

J Exp Biol. 2012 Feb 15;215(Pt 4):590-604. doi: 10.1242/jeb.062869.

17.

Contraction-induced changes in TNFalpha and Akt-mediated signalling are associated with increased myofibrillar protein in rat skeletal muscle.

Karagounis LG, Yaspelkis BB 3rd, Reeder DW, Lancaster GI, Hawley JA, Coffey VG.

Eur J Appl Physiol. 2010 Jul;109(5):839-48. doi: 10.1007/s00421-010-1427-5. Epub 2010 Mar 13.

PMID:
20229019
18.

Age-associated decrease in contraction-induced activation of downstream targets of Akt/mTor signaling in skeletal muscle.

Funai K, Parkington JD, Carambula S, Fielding RA.

Am J Physiol Regul Integr Comp Physiol. 2006 Apr;290(4):R1080-6. Epub 2005 Nov 23.

19.
20.

A comprehensive immunohistochemical and molecular approach to the PI3K/AKT/mTOR (phosphoinositide 3-kinase/v-akt murine thymoma viral oncogene/mammalian target of rapamycin) pathway in bladder urothelial carcinoma.

Korkolopoulou P, Levidou G, Trigka EA, Prekete N, Karlou M, Thymara I, Sakellariou S, Fragkou P, Isaiadis D, Pavlopoulos P, Patsouris E, Saetta AA.

BJU Int. 2012 Dec;110(11 Pt C):E1237-48. doi: 10.1111/j.1464-410X.2012.11569.x. Epub 2012 Oct 29.

Items per page

Supplemental Content

Write to the Help Desk