Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 103

1.

Conformational transition of the lid helix covering the protease active site is essential for the ATP-dependent protease activity of FtsH.

Suno R, Shimoyama M, Abe A, Shimamura T, Shimodate N, Watanabe YH, Akiyama Y, Yoshida M.

FEBS Lett. 2012 Sep 21;586(19):3117-21.

PMID:
23166924
[PubMed - indexed for MEDLINE]
2.

FtsH recognizes proteins with unfolded structure and hydrolyzes the carboxyl side of hydrophobic residues.

Asahara Y, Atsuta K, Motohashi K, Taguchi H, Yohda M, Yoshida M.

J Biochem. 2000 May;127(5):931-7.

PMID:
10788805
[PubMed - indexed for MEDLINE]
Free Article
3.

Dissecting the role of a conserved motif (the second region of homology) in the AAA family of ATPases. Site-directed mutagenesis of the ATP-dependent protease FtsH.

Karata K, Inagawa T, Wilkinson AJ, Tatsuta T, Ogura T.

J Biol Chem. 1999 Sep 10;274(37):26225-32.

PMID:
10473576
[PubMed - indexed for MEDLINE]
Free Article
4.

Structure of the whole cytosolic region of ATP-dependent protease FtsH.

Suno R, Niwa H, Tsuchiya D, Zhang X, Yoshida M, Morikawa K.

Mol Cell. 2006 Jun 9;22(5):575-85.

PMID:
16762831
[PubMed - indexed for MEDLINE]
Free Article
5.

The crystal structure of apo-FtsH reveals domain movements necessary for substrate unfolding and translocation.

Bieniossek C, Niederhauser B, Baumann UM.

Proc Natl Acad Sci U S A. 2009 Dec 22;106(51):21579-84. doi: 10.1073/pnas.0910708106. Epub 2009 Dec 2.

PMID:
19955424
[PubMed - indexed for MEDLINE]
Free PMC Article
6.

Conserved pore residues in the AAA protease FtsH are important for proteolysis and its coupling to ATP hydrolysis.

Yamada-Inagawa T, Okuno T, Karata K, Yamanaka K, Ogura T.

J Biol Chem. 2003 Dec 12;278(50):50182-7. Epub 2003 Sep 26.

PMID:
14514680
[PubMed - indexed for MEDLINE]
Free Article
7.

Hexameric ring structure of the ATPase domain of the membrane-integrated metalloprotease FtsH from Thermus thermophilus HB8.

Niwa H, Tsuchiya D, Makyio H, Yoshida M, Morikawa K.

Structure. 2002 Oct;10(10):1415-23.

PMID:
12377127
[PubMed - indexed for MEDLINE]
8.

Coupled kinetics of ATP and peptide hydrolysis by Escherichia coli FtsH protease.

Bruckner RC, Gunyuzlu PL, Stein RL.

Biochemistry. 2003 Sep 16;42(36):10843-52.

PMID:
12962509
[PubMed - indexed for MEDLINE]
9.

Site-directed mutagenesis of an alkaline phytase: influencing specificity, activity and stability in acidic milieu.

Tran TT, Mamo G, Búxo L, Le NN, Gaber Y, Mattiasson B, Hatti-Kaul R.

Enzyme Microb Technol. 2011 Jul 10;49(2):177-82. doi: 10.1016/j.enzmictec.2011.05.012. Epub 2011 May 27.

PMID:
22112406
[PubMed - indexed for MEDLINE]
10.

Stabilization of FtsH-unfolded protein complex by binding of ATP and blocking of protease.

Makyio H, Niwa H, Motohashi K, Taguchi H, Yoshida M.

Biochem Biophys Res Commun. 2002 Aug 9;296(1):8-12.

PMID:
12147219
[PubMed - indexed for MEDLINE]
11.

Characterization of mutants of the Escherichia coli AAA protease, FtsH, carrying a mutation in the central pore region.

Okuno T, Yamanaka K, Ogura T.

J Struct Biol. 2006 Oct;156(1):109-14. Epub 2006 Mar 6.

PMID:
16563799
[PubMed - indexed for MEDLINE]
12.

Structure and mechanism of the polynucleotide kinase component of the bacterial Pnkp-Hen1 RNA repair system.

Wang LK, Das U, Smith P, Shuman S.

RNA. 2012 Dec;18(12):2277-86. doi: 10.1261/rna.036061.112. Epub 2012 Nov 1.

PMID:
23118415
[PubMed - indexed for MEDLINE]
Free PMC Article
13.

Characterization of a conserved alpha-helical, coiled-coil motif at the C-terminal domain of the ATP-dependent FtsH (HflB) protease of Escherichia coli.

Shotland Y, Teff D, Koby S, Kobiler O, Oppenheim AB.

J Mol Biol. 2000 Jun 16;299(4):953-64.

PMID:
10843850
[PubMed - indexed for MEDLINE]
14.

FtsH (HflB) is an ATP-dependent protease selectively acting on SecY and some other membrane proteins.

Akiyama Y, Kihara A, Tokuda H, Ito K.

J Biol Chem. 1996 Dec 6;271(49):31196-201.

PMID:
8940120
[PubMed - indexed for MEDLINE]
Free Article
15.

Escherichia coli requires the protease activity of FtsH for growth.

Jayasekera MM, Foltin SK, Olson ER, Holler TP.

Arch Biochem Biophys. 2000 Aug 1;380(1):103-7.

PMID:
10900138
[PubMed - indexed for MEDLINE]
16.

Analysis of degradation of bacterial cell division protein FtsZ by the ATP-dependent zinc-metalloprotease FtsH in vitro.

Srinivasan R, Rajeswari H, Ajitkumar P.

Microbiol Res. 2008;163(1):21-30. Epub 2006 Apr 25.

PMID:
16638632
[PubMed - indexed for MEDLINE]
Free Article
17.

Probing the mechanism of ATP hydrolysis and substrate translocation in the AAA protease FtsH by modelling and mutagenesis.

Karata K, Verma CS, Wilkinson AJ, Ogura T.

Mol Microbiol. 2001 Feb;39(4):890-903.

PMID:
11251810
[PubMed - indexed for MEDLINE]
18.

Identification of glutamic acid 479 as the gluzincin coordinator of zinc in FtsH (HflB).

Saikawa N, Ito K, Akiyama Y.

Biochemistry. 2002 Feb 12;41(6):1861-8.

PMID:
11827531
[PubMed - indexed for MEDLINE]
19.

AAA+ proteases: ATP-fueled machines of protein destruction.

Sauer RT, Baker TA.

Annu Rev Biochem. 2011;80:587-612. doi: 10.1146/annurev-biochem-060408-172623. Review.

PMID:
21469952
[PubMed - indexed for MEDLINE]
20.

Structure-activity relationship of a cold-adapted purine nucleoside phosphorylase by site-directed mutagenesis.

Xie X, Huo W, Xia J, Xu Q, Chen N.

Enzyme Microb Technol. 2012 Jun 10;51(1):59-65. doi: 10.1016/j.enzmictec.2012.04.002. Epub 2012 Apr 21.

PMID:
22579392
[PubMed - indexed for MEDLINE]
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk