Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 146

1.

Model membrane interaction and DNA-binding of antimicrobial peptide Lasioglossin II derived from bee venom.

Bandyopadhyay S, Lee M, Sivaraman J, Chatterjee C.

Biochem Biophys Res Commun. 2013 Jan 4;430(1):1-6. doi: 10.1016/j.bbrc.2012.11.015. Epub 2012 Nov 14.

PMID:
23159628
[PubMed - indexed for MEDLINE]
2.

Structure of the bovine antimicrobial peptide indolicidin bound to dodecylphosphocholine and sodium dodecyl sulfate micelles.

Rozek A, Friedrich CL, Hancock RE.

Biochemistry. 2000 Dec 26;39(51):15765-74.

PMID:
11123901
[PubMed - indexed for MEDLINE]
3.

Rational design of tryptophan-rich antimicrobial peptides with enhanced antimicrobial activities and specificities.

Yu HY, Huang KC, Yip BS, Tu CH, Chen HL, Cheng HT, Cheng JW.

Chembiochem. 2010 Nov 2;11(16):2273-82. doi: 10.1002/cbic.201000372.

PMID:
20865718
[PubMed - indexed for MEDLINE]
4.

Lasioglossins: three novel antimicrobial peptides from the venom of the eusocial bee Lasioglossum laticeps (Hymenoptera: Halictidae).

Cerovský V, Budesínský M, Hovorka O, Cvacka J, Voburka Z, Slaninová J, Borovicková L, Fucík V, Bednárová L, Votruba I, Straka J.

Chembiochem. 2009 Aug 17;10(12):2089-99. doi: 10.1002/cbic.200900133.

PMID:
19591185
[PubMed - indexed for MEDLINE]
5.

Structural and DNA-binding studies on the bovine antimicrobial peptide, indolicidin: evidence for multiple conformations involved in binding to membranes and DNA.

Hsu CH, Chen C, Jou ML, Lee AY, Lin YC, Yu YP, Huang WT, Wu SH.

Nucleic Acids Res. 2005 Jul 20;33(13):4053-64. Print 2005.

PMID:
16034027
[PubMed - indexed for MEDLINE]
Free PMC Article
6.

Structures and mode of membrane interaction of a short alpha helical lytic peptide and its diastereomer determined by NMR, FTIR, and fluorescence spectroscopy.

Oren Z, Ramesh J, Avrahami D, Suryaprakash N, Shai Y, Jelinek R.

Eur J Biochem. 2002 Aug;269(16):3869-80.

PMID:
12180963
[PubMed - indexed for MEDLINE]
Free Article
7.

Influence of phosphocholine alkyl chain length on peptide-micelle interactions and micellar size and shape.

Göbl C, Dulle M, Hohlweg W, Grossauer J, Falsone SF, Glatter O, Zangger K.

J Phys Chem B. 2010 Apr 8;114(13):4717-24. doi: 10.1021/jp9114089.

PMID:
20225847
[PubMed - indexed for MEDLINE]
8.

Structure and dynamics of micelle-bound neuropeptide Y: comparison with unligated NPY and implications for receptor selection.

Bader R, Bettio A, Beck-Sickinger AG, Zerbe O.

J Mol Biol. 2001 Jan 12;305(2):307-29.

PMID:
11124908
[PubMed - indexed for MEDLINE]
9.

Molecular mechanism of action of β-hairpin antimicrobial peptide arenicin: oligomeric structure in dodecylphosphocholine micelles and pore formation in planar lipid bilayers.

Shenkarev ZO, Balandin SV, Trunov KI, Paramonov AS, Sukhanov SV, Barsukov LI, Arseniev AS, Ovchinnikova TV.

Biochemistry. 2011 Jul 19;50(28):6255-65. doi: 10.1021/bi200746t. Epub 2011 Jun 24.

PMID:
21627330
[PubMed - indexed for MEDLINE]
10.

Structure and topography of the membrane-binding C2 domain of factor VIII in the presence of dodecylphosphocholine micelles.

Veeraraghavan S, Baleja JD, Gilbert GE.

Biochem J. 1998 Jun 1;332 ( Pt 2):549-55.

PMID:
9601086
[PubMed - indexed for MEDLINE]
Free PMC Article
11.

Micelle bound structure and DNA interaction of brevinin-2-related peptide, an antimicrobial peptide derived from frog skin.

Bandyopadhyay S, Ng BY, Chong C, Lim MZ, Gill SK, Lee KH, Sivaraman J, Chatterjee C.

J Pept Sci. 2014 Oct;20(10):811-21. doi: 10.1002/psc.2673. Epub 2014 Jul 17.

PMID:
25044683
[PubMed - in process]
12.

Oligomeric structure of a cathelicidin antimicrobial peptide in dodecylphosphocholine micelle determined by NMR spectroscopy.

Saravanan R, Bhattacharjya S.

Biochim Biophys Acta. 2011 Jan;1808(1):369-81. doi: 10.1016/j.bbamem.2010.10.001. Epub 2010 Oct 8.

PMID:
20933496
[PubMed - indexed for MEDLINE]
Free Article
13.

NMR structure of the cathelicidin-derived human antimicrobial peptide LL-37 in dodecylphosphocholine micelles.

Porcelli F, Verardi R, Shi L, Henzler-Wildman KA, Ramamoorthy A, Veglia G.

Biochemistry. 2008 May 20;47(20):5565-72. doi: 10.1021/bi702036s. Epub 2008 Apr 26.

PMID:
18439024
[PubMed - indexed for MEDLINE]
14.

Antimicrobial peptide RP-1 structure and interactions with anionic versus zwitterionic micelles.

Bourbigot S, Dodd E, Horwood C, Cumby N, Fardy L, Welch WH, Ramjan Z, Sharma S, Waring AJ, Yeaman MR, Booth V.

Biopolymers. 2009 Jan;91(1):1-13. doi: 10.1002/bip.21071.

PMID:
18712851
[PubMed - indexed for MEDLINE]
15.

Interactions between mastoparan B and the membrane studied by 1H NMR spectroscopy.

Yu K, Kang S, Kim SD, Ryu PD, Kim Y.

J Biomol Struct Dyn. 2001 Feb;18(4):595-606.

PMID:
11245254
[PubMed - indexed for MEDLINE]
16.

Structure and mechanism of action of the antimicrobial peptide piscidin.

Campagna S, Saint N, Molle G, Aumelas A.

Biochemistry. 2007 Feb 20;46(7):1771-8. Epub 2007 Jan 25.

PMID:
17253775
[PubMed - indexed for MEDLINE]
17.

The membrane-proximal tryptophan-rich region of the HIV glycoprotein, gp41, forms a well-defined helix in dodecylphosphocholine micelles.

Schibli DJ, Montelaro RC, Vogel HJ.

Biochemistry. 2001 Aug 14;40(32):9570-8.

PMID:
11583156
[PubMed - indexed for MEDLINE]
18.

Peptide conformational changes induced by tryptophan-phosphocholine interactions in a micelle.

Neidigh JW, Andersen NH.

Biopolymers. 2002 Dec 5;65(5):354-61.

PMID:
12389215
[PubMed - indexed for MEDLINE]
19.

Structure of the antimicrobial peptide tritrpticin bound to micelles: a distinct membrane-bound peptide fold.

Schibli DJ, Hwang PM, Vogel HJ.

Biochemistry. 1999 Dec 21;38(51):16749-55.

PMID:
10606506
[PubMed - indexed for MEDLINE]
20.

Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk