Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 161

1.

Fluorescence resonance energy transfer quenching at the surface of graphene quantum dots for ultrasensitive detection of TNT.

Fan L, Hu Y, Wang X, Zhang L, Li F, Han D, Li Z, Zhang Q, Wang Z, Niu L.

Talanta. 2012 Nov 15;101:192-7. doi: 10.1016/j.talanta.2012.08.048. Epub 2012 Sep 3.

PMID:
23158311
[PubMed]
2.

Resonance energy transfer-amplifying fluorescence quenching at the surface of silica nanoparticles toward ultrasensitive detection of TNT.

Gao D, Wang Z, Liu B, Ni L, Wu M, Zhang Z.

Anal Chem. 2008 Nov 15;80(22):8545-53. doi: 10.1021/ac8014356. Epub 2008 Oct 11.

PMID:
18847285
[PubMed]
3.

Inverted opal fluorescent film chemosensor for the detection of explosive nitroaromatic vapors through fluorescence resonance energy transfer.

Fang Q, Geng J, Liu B, Gao D, Li F, Wang Z, Guan G, Zhang Z.

Chemistry. 2009 Nov 2;15(43):11507-14. doi: 10.1002/chem.200901488.

PMID:
19810058
[PubMed]
4.

Synthesis of highly fluorescent nitrogen-doped graphene quantum dots for sensitive, label-free detection of Fe (III) in aqueous media.

Ju J, Chen W.

Biosens Bioelectron. 2014 Aug 15;58:219-25. doi: 10.1016/j.bios.2014.02.061. Epub 2014 Mar 6.

PMID:
24650437
[PubMed - in process]
5.

A novel composite of graphene quantum dots and molecularly imprinted polymer for fluorescent detection of paranitrophenol.

Zhou Y, Qu ZB, Zeng Y, Zhou T, Shi G.

Biosens Bioelectron. 2014 Feb 15;52:317-23. doi: 10.1016/j.bios.2013.09.022. Epub 2013 Sep 16.

PMID:
24080211
[PubMed - indexed for MEDLINE]
6.

Fluorescent blood glucose monitor by hemin-functionalized graphene quantum dots based sensing system.

He Y, Wang X, Sun J, Jiao S, Chen H, Gao F, Wang L.

Anal Chim Acta. 2014 Jan 31;810:71-8. doi: 10.1016/j.aca.2013.11.059. Epub 2013 Dec 7.

PMID:
24439507
[PubMed - in process]
7.

Graphene quantum dots as fluorescence probes for turn-off sensing of melamine in the presence of Hg(2+).

Li L, Wu G, Hong T, Yin Z, Sun D, Abdel-Halim ES, Zhu JJ.

ACS Appl Mater Interfaces. 2014 Feb 26;6(4):2858-64. doi: 10.1021/am405305r. Epub 2014 Feb 5.

PMID:
24460139
[PubMed - in process]
8.

Turn-on and near-infrared fluorescent sensing for 2,4,6-trinitrotoluene based on hybrid (gold nanorod)-(quantum dots) assembly.

Xia Y, Song L, Zhu C.

Anal Chem. 2011 Feb 15;83(4):1401-7. doi: 10.1021/ac1028825. Epub 2011 Jan 24.

PMID:
21261282
[PubMed - indexed for MEDLINE]
9.

Fluorescence resonance energy transfer between quantum dots and graphene oxide for sensing biomolecules.

Dong H, Gao W, Yan F, Ji H, Ju H.

Anal Chem. 2010 Jul 1;82(13):5511-7. doi: 10.1021/ac100852z.

PMID:
20524633
[PubMed - indexed for MEDLINE]
10.

Amine-capped ZnS-Mn2+ nanocrystals for fluorescence detection of trace TNT explosive.

Tu R, Liu B, Wang Z, Gao D, Wang F, Fang Q, Zhang Z.

Anal Chem. 2008 May 1;80(9):3458-65. doi: 10.1021/ac800060f. Epub 2008 Mar 13.

PMID:
18336012
[PubMed - indexed for MEDLINE]
11.

3-Aminopropyltriethoxysilane-functionalized manganese doped ZnS quantum dots for room-temperature phosphorescence sensing ultratrace 2,4,6-trinitrotoluene in aqueous solution.

Wang YQ, Zou WS.

Talanta. 2011 Jul 15;85(1):469-75. doi: 10.1016/j.talanta.2011.04.014. Epub 2011 Apr 12.

PMID:
21645727
[PubMed - indexed for MEDLINE]
12.

A reversible dual-response fluorescence switch for the detection of multiple analytes.

Geng J, Liu P, Liu B, Guan G, Zhang Z, Han MY.

Chemistry. 2010 Mar 22;16(12):3720-7. doi: 10.1002/chem.200902721.

PMID:
20151433
[PubMed - indexed for MEDLINE]
13.

Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots.

Tang L, Ji R, Cao X, Lin J, Jiang H, Li X, Teng KS, Luk CM, Zeng S, Hao J, Lau SP.

ACS Nano. 2012 Jun 26;6(6):5102-10. doi: 10.1021/nn300760g. Epub 2012 May 10.

PMID:
22559247
[PubMed - indexed for MEDLINE]
14.

Fabrication of highly fluorescent graphene quantum dots using L-glutamic acid for in vitro/in vivo imaging and sensing.

Wu X, Tian F, Wang W, Chen J, Wu M, Zhao JX.

J Mater Chem C Mater Opt Electron Devices. 2013 Aug 21;1(31):4676-4684.

PMID:
23997934
[PubMed]
15.

A hybrid quantum dot-antibody fragment fluorescence resonance energy transfer-based TNT sensor.

Goldman ER, Medintz IL, Whitley JL, Hayhurst A, Clapp AR, Uyeda HT, Deschamps JR, Lassman ME, Mattoussi H.

J Am Chem Soc. 2005 May 11;127(18):6744-51.

PMID:
15869297
[PubMed - indexed for MEDLINE]
16.

The electron-transfer based interaction between transition metal ions and photoluminescent graphene quantum dots (GQDs): a platform for metal ion sensing.

Huang H, Liao L, Xu X, Zou M, Liu F, Li N.

Talanta. 2013 Dec 15;117:152-7. doi: 10.1016/j.talanta.2013.08.055. Epub 2013 Sep 4.

PMID:
24209324
[PubMed - indexed for MEDLINE]
17.

DNA nanosensor based on biocompatible graphene quantum dots and carbon nanotubes.

Qian ZS, Shan XY, Chai LJ, Ma JJ, Chen JR, Feng H.

Biosens Bioelectron. 2014 Oct 15;60:64-70. doi: 10.1016/j.bios.2014.04.006. Epub 2014 Apr 16.

PMID:
24768864
[PubMed - in process]
18.

Multiplexed fluorescence resonance energy transfer aptasensor between upconversion nanoparticles and graphene oxide for the simultaneous determination of mycotoxins.

Wu S, Duan N, Ma X, Xia Y, Wang H, Wang Z, Zhang Q.

Anal Chem. 2012 Jul 17;84(14):6263-70. doi: 10.1021/ac301534w. Epub 2012 Jul 6.

PMID:
22816786
[PubMed - indexed for MEDLINE]
19.

An ultrasensitive homogeneous aptasensor for kanamycin based on upconversion fluorescence resonance energy transfer.

Li H, Sun DE, Liu Y, Liu Z.

Biosens Bioelectron. 2014 May 15;55:149-56. doi: 10.1016/j.bios.2013.11.079. Epub 2013 Dec 10.

PMID:
24373954
[PubMed - in process]
20.

Electrochemiluminescence resonance energy transfer between graphene quantum dots and gold nanoparticles for DNA damage detection.

Lu Q, Wei W, Zhou Z, Zhou Z, Zhang Y, Liu S.

Analyst. 2014 May 21;139(10):2404-10. doi: 10.1039/c4an00020j.

PMID:
24686461
[PubMed - in process]

Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk