Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 127

1.

A versatile approach to organic photovoltaics evaluation using white light pulse and microwave conductivity.

Saeki A, Yoshikawa S, Tsuji M, Koizumi Y, Ide M, Vijayakumar C, Seki S.

J Am Chem Soc. 2012 Nov 21;134(46):19035-42. doi: 10.1021/ja309524f. Epub 2012 Nov 13.

PMID:
23148528
[PubMed]
2.

Critical interfaces in organic solar cells and their influence on the open-circuit voltage.

Potscavage WJ Jr, Sharma A, Kippelen B.

Acc Chem Res. 2009 Nov 17;42(11):1758-67. doi: 10.1021/ar900139v.

PMID:
19708653
[PubMed]
3.

Conjugated polymers based on benzo[2,1-b:3,4-b']dithiophene with low-lying highest occupied molecular orbital energy levels for organic photovoltaics.

Xiao S, Stuart AC, Liu S, You W.

ACS Appl Mater Interfaces. 2009 Jul;1(7):1613-21. doi: 10.1021/am900327n.

PMID:
20355969
[PubMed]
4.

Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption.

Li Y.

Acc Chem Res. 2012 May 15;45(5):723-33. doi: 10.1021/ar2002446. Epub 2012 Jan 30.

PMID:
22288572
[PubMed]
5.

Interface-engineering additives of poly(oxyethylene tridecyl ether) for low-band gap polymer solar cells consisting of PCDTBT:PCBM₇₀ bulk-heterojunction layers.

Huh YH, Park B.

Opt Express. 2013 Jan 14;21 Suppl 1:A146-56. doi: 10.1364/OE.21.00A146.

PMID:
23389265
[PubMed - indexed for MEDLINE]
6.

Hole transport in Poly[2,7-(9,9-dihexylfluorene)-alt-bithiophene] and high-efficiency polymer solar cells from its blends with PCBM.

Tang W, Chellappan V, Liu M, Chen ZK, Ke L.

ACS Appl Mater Interfaces. 2009 Jul;1(7):1467-73. doi: 10.1021/am900144b.

PMID:
20355950
[PubMed]
7.

Diketopyrrolopyrrole-based π-bridged donor-acceptor polymer for photovoltaic applications.

Li W, Lee T, Oh SJ, Kagan CR.

ACS Appl Mater Interfaces. 2011 Oct;3(10):3874-83. doi: 10.1021/am200720e. Epub 2011 Sep 26.

PMID:
21888419
[PubMed]
8.

Structure, dynamics, and power conversion efficiency correlations in a new low bandgap polymer: PCBM solar cell.

Guo J, Liang Y, Szarko J, Lee B, Son HJ, Rolczynski BS, Yu L, Chen LX.

J Phys Chem B. 2010 Jan 21;114(2):742-8. doi: 10.1021/jp909135k. Erratum in: J Phys Chem B. 2010 Apr 8;114(13):4746. Son, Hae Jun [corrected to Son, Hae Jung].

PMID:
20038154
[PubMed]
9.

Comprehensive approach to intrinsic charge carrier mobility in conjugated organic molecules, macromolecules, and supramolecular architectures.

Saeki A, Koizumi Y, Aida T, Seki S.

Acc Chem Res. 2012 Aug 21;45(8):1193-202. doi: 10.1021/ar200283b. Epub 2012 Jun 7.

PMID:
22676381
[PubMed]
10.

Effect of the incorporation of a low-band-gap small molecule in a conjugated vinylene copolymer: PCBM blend for organic photovoltaic devices.

Suresh P, Balraju P, Sharma GD, Mikroyannidis JA, Stylianakis MM.

ACS Appl Mater Interfaces. 2009 Jul;1(7):1370-4. doi: 10.1021/am900244y.

PMID:
20355936
[PubMed]
11.

Synthesis and photovoltaic properties of a new thiophene-cyclopentadiene-based conjugated polymer.

Lim E, Lee S, Lee KK.

J Nanosci Nanotechnol. 2012 May;12(5):4194-8.

PMID:
22852371
[PubMed]
12.

Synthesis of a low-band-gap small molecule based on acenaphthoquinoxaline for efficient bulk heterojunction solar cells.

Mikroyannidis JA, Kabanakis AN, Kumar A, Sharma SS, Vijay YK, Sharma GD.

Langmuir. 2010 Aug 3;26(15):12909-16. doi: 10.1021/la1016966.

PMID:
20666422
[PubMed]
13.

Aesthetically pleasing conjugated polymer:fullerene blends for blue-green solar cells via roll-to-roll processing.

Amb CM, Craig MR, Koldemir U, Subbiah J, Choudhury KR, Gevorgyan SA, Jørgensen M, Krebs FC, So F, Reynolds JR.

ACS Appl Mater Interfaces. 2012 Mar;4(3):1847-53. doi: 10.1021/am300156p. Epub 2012 Feb 21.

PMID:
22352848
[PubMed]
14.

Beyond fullerenes: design of nonfullerene acceptors for efficient organic photovoltaics.

Li H, Earmme T, Ren G, Saeki A, Yoshikawa S, Murari NM, Subramaniyan S, Crane MJ, Seki S, Jenekhe SA.

J Am Chem Soc. 2014 Oct 15;136(41):14589-97. doi: 10.1021/ja508472j. Epub 2014 Sep 29.

PMID:
25265412
[PubMed - in process]
15.

The incorporation of mono- and bi-functionalized multiwall carbon nanotubes in organic photovoltaic cells.

Sadhu V, Nismy NA, Adikaari AA, Henley SJ, Shkunov M, Silva SR.

Nanotechnology. 2011 Jul 1;22(26):265607. doi: 10.1088/0957-4484/22/26/265607. Epub 2011 May 17.

PMID:
21576781
[PubMed]
16.

Efficient conventional- and inverted-type photovoltaic cells using a planar alternating polythiophene copolymer.

Lee W, Choi H, Hwang S, Kim JY, Woo HY.

Chemistry. 2012 Feb 27;18(9):2551-8. doi: 10.1002/chem.201102883. Epub 2012 Jan 25.

PMID:
22278965
[PubMed]
17.

Efficient organic photovoltaic devices by using PEDOT:PSSs with excellent hole extraction ability.

Seo JH, Koo JR, Lee SJ, Seo BM, Kim YK.

J Nanosci Nanotechnol. 2011 Aug;11(8):7307-10.

PMID:
22103183
[PubMed]
18.

Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells.

Wu JL, Chen FC, Hsiao YS, Chien FC, Chen P, Kuo CH, Huang MH, Hsu CS.

ACS Nano. 2011 Feb 22;5(2):959-67. doi: 10.1021/nn102295p. Epub 2011 Jan 13.

PMID:
21229960
[PubMed]
19.

1-Aryl-4-silylmethyl[60]fullerenes: synthesis, properties, and photovoltaic performance.

Matsuo Y, Oyama H, Soga I, Okamoto T, Tanaka H, Saeki A, Seki S, Nakamura E.

Chem Asian J. 2013 Jan;8(1):121-8. doi: 10.1002/asia.201200726. Epub 2012 Sep 28.

PMID:
23023947
[PubMed]
20.

Ultrafast intramolecular exciton splitting dynamics in isolated low-band-gap polymers and their implications in photovoltaic materials design.

Rolczynski BS, Szarko JM, Son HJ, Liang Y, Yu L, Chen LX.

J Am Chem Soc. 2012 Mar 7;134(9):4142-52. doi: 10.1021/ja209003y. Epub 2012 Feb 22.

PMID:
22309185
[PubMed]

Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk