Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 96

1.

In vitro biotransformation of PBDEs by root crude enzyme extracts: potential role of nitrate reductase (NaR) and glutathione S-transferase (GST) in their debromination.

Huang H, Zhang S, Wang S, Lv J.

Chemosphere. 2013 Feb;90(6):1885-92. doi: 10.1016/j.chemosphere.2012.10.013. Epub 2012 Nov 10.

PMID:
23146276
2.

Uptake, translocation, and debromination of polybrominated diphenyl ethers in maize.

Zhao M, Zhang S, Wang S, Huang H.

J Environ Sci (China). 2012;24(3):402-9.

PMID:
22655352
3.

Debrominated, hydroxylated and methoxylated metabolism in maize (Zea mays L.) exposed to lesser polybrominated diphenyl ethers (PBDEs).

Wang S, Zhang S, Huang H, Lu A, Ping H.

Chemosphere. 2012 Nov;89(11):1295-301. doi: 10.1016/j.chemosphere.2012.05.026. Epub 2012 Jun 8.

PMID:
22682894
4.

Species-specific differences and structure-activity relationships in the debromination of PBDE congeners in three fish species.

Roberts SC, Noyes PD, Gallagher EP, Stapleton HM.

Environ Sci Technol. 2011 Mar 1;45(5):1999-2005. doi: 10.1021/es103934x. Epub 2011 Feb 3.

5.

In vivo metabolism of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) in young whole pumpkin plant.

Sun J, Liu J, Yu M, Wang C, Sun Y, Zhang A, Wang T, Lei Z, Jiang G.

Environ Sci Technol. 2013 Apr 16;47(8):3701-7. doi: 10.1021/es4003263. Epub 2013 Apr 1.

PMID:
23510101
6.

Plant uptake and dissipation of PBDEs in the soils of electronic waste recycling sites.

Huang H, Zhang S, Christie P.

Environ Pollut. 2011 Jan;159(1):238-43. doi: 10.1016/j.envpol.2010.08.034.

PMID:
20869797
7.

Effects of electron donors on anaerobic microbial debromination of polybrominated diphenyl ethers (PBDEs).

Qiu M, Chen X, Deng D, Guo J, Sun G, Mai B, Xu M.

Biodegradation. 2012 Jun;23(3):351-61. doi: 10.1007/s10532-011-9514-9. Epub 2011 Sep 11.

PMID:
21910024
8.

Ah receptor agonists in UV-exposed toluene solutions of decabromodiphenyl ether (decaBDE) and in soils contaminated with polybrominated diphenyl ethers (PBDEs).

Olsman H, Hagberg J, Kalbin G, Julander A, van Bavel B, Strid A, Tysklind M, Engwall M.

Environ Sci Pollut Res Int. 2006 May;13(3):161-9.

PMID:
16758706
9.

Do heavy metals and metalloids influence the detoxification of organic xenobiotics in plants?

Schröder P, Lyubenova L, Huber C.

Environ Sci Pollut Res Int. 2009 Nov;16(7):795-804. doi: 10.1007/s11356-009-0168-7. Epub 2009 May 22.

PMID:
19462193
10.

Uptake, translocation and biotransformation kinetics of BDE-47, 6-OH-BDE-47 and 6-MeO-BDE-47 in maize (Zea mays L.).

Xu X, Wen B, Huang H, Wang S, Han R, Zhang S.

Environ Pollut. 2016 Jan;208(Pt B):714-22. doi: 10.1016/j.envpol.2015.10.051. Epub 2015 Nov 10.

PMID:
26561454
11.

Debromination of polybrominated diphenyl ethers by nanoscale zerovalent iron: pathways, kinetics, and reactivity.

Zhuang Y, Ahn S, Luthy RG.

Environ Sci Technol. 2010 Nov 1;44(21):8236-42. doi: 10.1021/es101601s.

12.

Complete debromination of tetra- and penta-brominated diphenyl ethers by a coculture consisting of dehalococcoides and desulfovibrio species.

Lee LK, Ding C, Yang KL, He J.

Environ Sci Technol. 2011 Oct 1;45(19):8475-82. doi: 10.1021/es201559g. Epub 2011 Sep 6.

PMID:
21859110
13.

Absorption and translocation of polybrominated diphenyl ethers (PBDEs) by plants from contaminated sewage sludge.

Vrkoslavová J, Demnerová K, Macková M, Zemanová T, Macek T, Hajslová J, Pulkrabová J, Hrádková P, Stiborová H.

Chemosphere. 2010 Sep;81(3):381-6. doi: 10.1016/j.chemosphere.2010.07.010. Epub 2010 Aug 3.

PMID:
20684973
14.

[Reductive debromination of polybrominated diphenyl ethers in aquifier by nano zero-valent iron: debromination kinetics and pathway].

Yang YH, Xu WW, Peng SK, Lu SF, Xiang Y, Liang DW.

Huan Jing Ke Xue. 2014 Mar;35(3):964-71. Chinese.

PMID:
24881384
15.

Effects of deBDE and PCB-126 on hepatic concentrations of PBDEs and methoxy-PBDEs in Atlantic tomcod.

Lebeuf M, Couillard CM, Légaré B, Trottier S.

Environ Sci Technol. 2006 May 15;40(10):3211-6.

PMID:
16749683
16.

Behavior of decabromodiphenyl ether (BDE-209) in soil: effects of rhizosphere and mycorrhizal colonization of ryegrass roots.

Wang S, Zhang S, Huang H, Christie P.

Environ Pollut. 2011 Mar;159(3):749-53. doi: 10.1016/j.envpol.2010.11.035. Epub 2010 Dec 22.

PMID:
21183262
17.

Behavior of decabromodiphenyl ether (BDE-209) in the soil-plant system: uptake, translocation, and metabolism in plants and dissipation in soil.

Huang H, Zhang S, Christie P, Wang S, Xie M.

Environ Sci Technol. 2010 Jan 15;44(2):663-7. doi: 10.1021/es901860r.

PMID:
20000822
18.

Modeling the environmental fate of polybrominated diphenyl ethers (PBDEs): the importance of photolysis for the formation of lighter PBDEs.

Schenker U, Soltermann F, Scheringer M, Hungerbühler K.

Environ Sci Technol. 2008 Dec 15;42(24):9244-9.

PMID:
19174899
19.

Changes in physiological responses of an Antarctic fish, the emerald rock cod (Trematomus bernacchii), following exposure to polybrominated diphenyl ethers (PBDEs).

Ghosh R, Lokman PM, Lamare MD, Metcalf VJ, Burritt DJ, Davison W, Hageman KJ.

Aquat Toxicol. 2013 Mar 15;128-129:91-100. doi: 10.1016/j.aquatox.2012.11.019. Epub 2012 Dec 7.

PMID:
23274353
20.

Fate of pentabrominated diphenyl ethers in soil: abiotic sorption, plant uptake, and the impact of interspecific plant interactions.

Mueller KE, Mueller-Spitz SR, Henry HF, Vonderheide AP, Soman RS, Kinkle BK, Shann JR.

Environ Sci Technol. 2006 Nov 1;40(21):6662-7.

Items per page

Supplemental Content

Write to the Help Desk