Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 152

1.

Improving the fermentation performance of Saccharomyces cerevisiae by laccase during ethanol production from steam-exploded wheat straw at high-substrate loadings.

Alvira P, Moreno AD, Ibarra D, Sáez F, Ballesteros M.

Biotechnol Prog. 2013 Jan-Feb;29(1):74-82. doi: 10.1002/btpr.1666. Epub 2012 Dec 20.

PMID:
23143932
2.

Comparing cell viability and ethanol fermentation of the thermotolerant yeast Kluyveromyces marxianus and Saccharomyces cerevisiae on steam-exploded biomass treated with laccase.

Moreno AD, Ibarra D, Ballesteros I, González A, Ballesteros M.

Bioresour Technol. 2013 May;135:239-45. doi: 10.1016/j.biortech.2012.11.095. Epub 2012 Dec 2.

PMID:
23265821
3.

Laccase detoxification of steam-exploded wheat straw for second generation bioethanol.

Jurado M, Prieto A, Martínez-Alcalá A, Martínez AT, Martínez MJ.

Bioresour Technol. 2009 Dec;100(24):6378-84. doi: 10.1016/j.biortech.2009.07.049. Epub 2009 Aug 14.

PMID:
19683434
4.

Different laccase detoxification strategies for ethanol production from lignocellulosic biomass by the thermotolerant yeast Kluyveromyces marxianus CECT 10875.

Moreno AD, Ibarra D, Fernández JL, Ballesteros M.

Bioresour Technol. 2012 Feb;106:101-9. doi: 10.1016/j.biortech.2011.11.108. Epub 2011 Dec 3.

PMID:
22197073
5.

In situ laccase treatment enhances the fermentability of steam-exploded wheat straw in SSCF processes at high dry matter consistencies.

Moreno AD, Tomás-Pejó E, Ibarra D, Ballesteros M, Olsson L.

Bioresour Technol. 2013 Sep;143:337-43. doi: 10.1016/j.biortech.2013.06.011. Epub 2013 Jun 13.

PMID:
23811522
6.

Comparison of SHF and SSF processes from steam-exploded wheat straw for ethanol production by xylose-fermenting and robust glucose-fermenting Saccharomyces cerevisiae strains.

Tomás-Pejó E, Oliva JM, Ballesteros M, Olsson L.

Biotechnol Bioeng. 2008 Aug 15;100(6):1122-31. doi: 10.1002/bit.21849.

PMID:
18383076
7.

Fed-batch SSCF using steam-exploded wheat straw at high dry matter consistencies and a xylose-fermenting Saccharomyces cerevisiae strain: effect of laccase supplementation.

Moreno AD, Tomás-Pejó E, Ibarra D, Ballesteros M, Olsson L.

Biotechnol Biofuels. 2013 Nov 13;6(1):160. doi: 10.1186/1754-6834-6-160.

8.

Enzymatic hydrolysis and ethanol fermentation of high dry matter wet-exploded wheat straw at low enzyme loading.

Georgieva TI, Hou X, Hilstrøm T, Ahring BK.

Appl Biochem Biotechnol. 2008 Mar;148(1-3):35-44. doi: 10.1007/s12010-007-8085-z. Epub 2007 Nov 27.

PMID:
18418739
9.

Influence of high solid concentration on enzymatic hydrolysis and fermentation of steam-exploded corn stover biomass.

Lu Y, Wang Y, Xu G, Chu J, Zhuang Y, Zhang S.

Appl Biochem Biotechnol. 2010 Jan;160(2):360-9. doi: 10.1007/s12010-008-8306-0. Epub 2008 Jul 15.

PMID:
18626577
10.

Ethanol production from steam-explosion pretreated wheat straw.

Ballesteros I, Negro MJ, Oliva JM, Cabañas A, Manzanares P, Ballesteros M.

Appl Biochem Biotechnol. 2006 Spring;129-132:496-508.

PMID:
16915665
11.

Adaptation of the xylose fermenting yeast Saccharomyces cerevisiae F12 for improving ethanol production in different fed-batch SSF processes.

Tomás-Pejó E, Ballesteros M, Oliva JM, Olsson L.

J Ind Microbiol Biotechnol. 2010 Nov;37(11):1211-20. doi: 10.1007/s10295-010-0768-8. Epub 2010 Jun 29.

PMID:
20585830
12.

Inhibition of cellulose enzymatic hydrolysis by laccase-derived compounds from phenols.

Oliva-Taravilla A, Tomás-Pejó E, Demuez M, González-Fernández C, Ballesteros M.

Biotechnol Prog. 2015 May-Jun;31(3):700-6. doi: 10.1002/btpr.2068. Epub 2015 Mar 17.

PMID:
25740593
13.

Steam pretreatment and fermentation of the straw material "Paja Brava" using simultaneous saccharification and co-fermentation.

Carrasco C, Baudel H, Peñarrieta M, Solano C, Tejeda L, Roslander C, Galbe M, Lidén G.

J Biosci Bioeng. 2011 Feb;111(2):167-74. doi: 10.1016/j.jbiosc.2010.10.009. Epub 2010 Nov 16.

PMID:
21081285
14.

Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: review.

Parawira W, Tekere M.

Crit Rev Biotechnol. 2011 Mar;31(1):20-31. doi: 10.3109/07388551003757816. Epub 2010 May 31. Review.

PMID:
20513164
15.
16.

Acetone-butanol-ethanol (ABE) production by Clostridium beijerinckii from wheat straw hydrolysates: efficient use of penta and hexa carbohydrates.

Bellido C, Loureiro Pinto M, Coca M, González-Benito G, García-Cubero MT.

Bioresour Technol. 2014 Sep;167:198-205. doi: 10.1016/j.biortech.2014.06.020. Epub 2014 Jun 14.

PMID:
24983690
17.

Fermentation of biologically pretreated wheat straw for ethanol production: comparison of fermentative microorganisms and process configurations.

López-Abelairas M, Lu-Chau TA, Lema JM.

Appl Biochem Biotechnol. 2013 Aug;170(8):1838-52. doi: 10.1007/s12010-013-0318-8. Epub 2013 Jun 11.

PMID:
23754562
18.

Efficacy of a hot washing process for pretreated yellow poplar to enhance bioethanol production.

Nagle NJ, Elander RT, Newman MM, Rohrback BT, Ruiz RO, Torget RW.

Biotechnol Prog. 2002 Jul-Aug;18(4):734-8.

PMID:
12153306
19.

Optimization of ethanol production from microfluidized wheat straw by response surface methodology.

Turhan O, Isci A, Mert B, Sakiyan O, Donmez S.

Prep Biochem Biotechnol. 2015;45(8):785-95. doi: 10.1080/10826068.2014.958164.

PMID:
25181638
20.

[Inhibitors and their effects on Saccharomyces cerevisiae and relevant countermeasures in bioprocess of ethanol production from lignocellulose--a review].

Li H, Zhang X, Shen Y, Dong Y, Bao X.

Sheng Wu Gong Cheng Xue Bao. 2009 Sep;25(9):1321-8. Review. Chinese.

PMID:
19938474
Items per page

Supplemental Content

Write to the Help Desk