Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 105

1.

Cerebral protection during controlled hypoperfusion in a piglet model: comparison of moderate (25°C) versus deep (18°C) hypothermia at various flow rates using intraoperative measurements and ex vivo investigation.

Walther T, Dhein S, Ullmann C, Schneider K, Bilz T, Rastan A, Garbade J, Falk V, Emrich FC, Muth P, Mohr FW, Kostelka M.

Thorac Cardiovasc Surg. 2013 Oct;61(7):546-52. doi: 10.1055/s-0032-1324710. Epub 2012 Nov 8.

PMID:
23138358
2.

Selective cerebral perfusion using moderate flow in complex cardiac surgery provides sufficient neuroprotection. Are children young adults?

Emrich F, Walther T, Muth P, Ullmann C, Rastan AJ, Dhein S, Mohr FW, Kostelka MM.

Eur J Cardiothorac Surg. 2012 Oct;42(4):704-10. doi: 10.1093/ejcts/ezs119. Epub 2012 Jul 27.

PMID:
22843513
4.

Cerebral oxygen metabolism during total body flow and antegrade cerebral perfusion at deep and moderate hypothermia.

Sasaki T, Boni L, Riemer RK, Yeung JT, Ramamoorthy C, Beckman R, Gisner C, Shuttleworth P, Hanley FL, Reddy VM.

Artif Organs. 2010 Nov;34(11):980-6. doi: 10.1111/j.1525-1594.2010.01131.x.

PMID:
21092040
5.

Measurement of blood flow index during antegrade selective cerebral perfusion with near-infrared spectroscopy in newborn piglets.

Meybohm P, Hoffmann G, Renner J, Boening A, Cavus E, Steinfath M, Scholz J, Bein B.

Anesth Analg. 2008 Mar;106(3):795-803, table of contents. doi: 10.1213/ane.0b013e31816173b4.

PMID:
18292421
6.

Global and regional cerebral blood flow in neonatal piglets undergoing pulsatile cardiopulmonary bypass with continuous perfusion at 25 degrees C and circulatory arrest at 18 degrees C.

Undar A, Masai T, Yang SQ, Eichstaedt HC, McGarry MC, Vaughn WK, Goddard-Finegold J, Fraser CD Jr.

Perfusion. 2001 Nov;16(6):503-10.

PMID:
11761090
7.

Venous obstruction and cerebral perfusion during experimental cardiopulmonary bypass.

Tovedal T, Jonsson O, Zemgulis V, Myrdal G, Thelin S, Lennmyr F.

Interact Cardiovasc Thorac Surg. 2010 Nov;11(5):561-6. doi: 10.1510/icvts.2010.238535. Epub 2010 Aug 9.

8.

Cerebral oxygen monitoring during neonatal cardiopulmonary bypass and deep hypothermic circulatory arrest.

Abdul-Khaliq H, Troitzsch D, Schubert S, Wehsack A, Böttcher W, Gutsch E, Hübler M, Hetzer R, Lange PE.

Thorac Cardiovasc Surg. 2002 Apr;50(2):77-81.

PMID:
11981706
9.

Selective cerebral perfusion: real-time evidence of brain oxygen and energy metabolism preservation.

Salazar JD, Coleman RD, Griffith S, McNeil JD, Steigelman M, Young H, Hensler B, Dixon P, Calhoon J, Serrano F, DiGeronimo R.

Ann Thorac Surg. 2009 Jul;88(1):162-9. doi: 10.1016/j.athoracsur.2009.03.084.

PMID:
19559218
10.

Visual light spectroscopy reflects flow-related changes in brain oxygenation during regional low-flow perfusion and deep hypothermic circulatory arrest.

Amir G, Ramamoorthy C, Riemer RK, Davis CR, Hanley FL, Reddy VM.

J Thorac Cardiovasc Surg. 2006 Dec;132(6):1307-13. Epub 2006 Nov 16.

11.

Correlation between cerebral and mixed venous oxygen saturation during moderate versus tepid hypothermic hemodiluted cardiopulmonary bypass.

Baraka A, Naufal M, El-Khatib M.

J Cardiothorac Vasc Anesth. 2006 Dec;20(6):819-25. Epub 2006 Jan 6.

PMID:
17138087
12.

Moderate hypothermia during aortic arch surgery is associated with reduced risk of early mortality.

Tsai JY, Pan W, Lemaire SA, Pisklak P, Lee VV, Bracey AW, Elayda MA, Preventza O, Price MD, Collard CD, Coselli JS.

J Thorac Cardiovasc Surg. 2013 Sep;146(3):662-7. doi: 10.1016/j.jtcvs.2013.03.004. Epub 2013 Apr 1.

13.

Tissue oxygen tension during regional low-flow perfusion in neonates.

DeCampli WM, Schears G, Myung R, Schultz S, Creed J, Pastuszko A, Wilson DF.

J Thorac Cardiovasc Surg. 2003 Mar;125(3):472-80.

14.
15.

Effects of moderate versus deep hypothermic circulatory arrest and selective cerebral perfusion on cerebrospinal fluid proteomic profiles in a piglet model of cardiopulmonary bypass.

Allibhai T, DiGeronimo R, Whitin J, Salazar J, Yu TT, Ling XB, Cohen H, Dixon P, Madan A.

J Thorac Cardiovasc Surg. 2009 Dec;138(6):1290-6. doi: 10.1016/j.jtcvs.2009.06.001. Epub 2009 Jul 29.

16.

The impact of temperature and pump flow rate during selective cerebral perfusion on regional blood flow in piglets.

Wang J, Ginther RM, Riegel M, Huang R, Sharma MS, Guleserian KJ, Forbess JM.

J Thorac Cardiovasc Surg. 2013 Jan;145(1):188-94; discussion 194-5. doi: 10.1016/j.jtcvs.2012.09.055. Epub 2012 Nov 7.

17.
18.

The effectiveness of high-flow regional cerebral perfusion in Norwood stage I palliation.

Miyaji K, Miyamoto T, Kohira S, Yoshii T, Itatani K, Sato H, Inoue N.

Eur J Cardiothorac Surg. 2011 Nov;40(5):1215-20. doi: 10.1016/j.ejcts.2011.02.040. Epub 2011 Apr 5.

PMID:
21470870
19.

The impact of deep and moderate body temperatures on end-organ function during hypothermic circulatory arrest.

Khaladj N, Peterss S, Pichlmaier M, Shrestha M, von Wasielewski R, Hoy L, Haverich A, Hagl C.

Eur J Cardiothorac Surg. 2011 Dec;40(6):1492-9; discussion 1499. doi: 10.1016/j.ejcts.2011.03.031. Epub 2011 Apr 30.

PMID:
21531569
20.

Effects of aortopulmonary collaterals on cerebral cooling and cerebral metabolic recovery after circulatory arrest.

Kirshbom PM, Skaryak LA, DiBernardo LR, Kern FH, Greeley WJ, Gaynor JW, Ungerleider RM.

Circulation. 1995 Nov 1;92(9 Suppl):II490-4.

PMID:
7586460
Items per page

Supplemental Content

Write to the Help Desk