Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 106

Similar articles for PubMed (Select 23124591)

1.

Electrical stimulation modulates osteoblast proliferation and bone protein production through heparin-bioactivated conductive scaffolds.

Meng S, Rouabhia M, Zhang Z.

Bioelectromagnetics. 2013 Apr;34(3):189-99. doi: 10.1002/bem.21766. Epub 2012 Nov 1.

PMID:
23124591
2.

Accelerated osteoblast mineralization on a conductive substrate by multiple electrical stimulation.

Meng S, Zhang Z, Rouabhia M.

J Bone Miner Metab. 2011 Sep;29(5):535-44. doi: 10.1007/s00774-010-0257-1. Epub 2011 Feb 17. Erratum in: J Bone Miner Metab. 2011 Sep;29(5):545.

PMID:
21327884
3.

Polyester copolymer scaffolds enhance expression of bone markers in osteoblast-like cells.

Idris SB, Arvidson K, Plikk P, Ibrahim S, Finne-Wistrand A, Albertsson AC, Bolstad AI, Mustafa K.

J Biomed Mater Res A. 2010 Aug;94(2):631-9. doi: 10.1002/jbm.a.32726.

PMID:
20205238
4.

Novel polypyrrole-coated polylactide scaffolds enhance adipose stem cell proliferation and early osteogenic differentiation.

Pelto J, Björninen M, Pälli A, Talvitie E, Hyttinen J, Mannerström B, Suuronen Seppanen R, Kellomäki M, Miettinen S, Haimi S.

Tissue Eng Part A. 2013 Apr;19(7-8):882-92. doi: 10.1089/ten.TEA.2012.0111. Epub 2013 Jan 4.

5.

Increased proliferation and differentiation of pre-osteoblasts MC3T3-E1 cells on nanostructured polypyrrole membrane under combined electrical and mechanical stimulation.

Liu L, Li P, Zhou G, Wang M, Jia X, Liu M, Niu X, Song W, Liu H, Fan Y.

J Biomed Nanotechnol. 2013 Sep;9(9):1532-9.

PMID:
23980501
6.

Heparin dopant increases the electrical stability, cell adhesion, and growth of conducting polypyrrole/poly(L,L-lactide) composites.

Meng S, Rouabhia M, Shi G, Zhang Z.

J Biomed Mater Res A. 2008 Nov;87(2):332-44. doi: 10.1002/jbm.a.31735.

PMID:
18181107
7.

Enhancement of differentiation and mineralisation of osteoblast-like cells by degenerate electrical waveform in an in vitro electrical stimulation model compared to capacitive coupling.

Griffin M, Sebastian A, Colthurst J, Bayat A.

PLoS One. 2013 Sep 11;8(9):e72978. doi: 10.1371/journal.pone.0072978. eCollection 2013.

8.

Electrical regulation of Schwann cells using conductive polypyrrole/chitosan polymers.

Huang J, Hu X, Lu L, Ye Z, Zhang Q, Luo Z.

J Biomed Mater Res A. 2010 Apr;93(1):164-74. doi: 10.1002/jbm.a.32511.

PMID:
19536828
9.

The regulation of cell functions electrically using biodegradable polypyrrole-polylactide conductors.

Shi G, Zhang Z, Rouabhia M.

Biomaterials. 2008 Oct;29(28):3792-8. doi: 10.1016/j.biomaterials.2008.06.010. Epub 2008 Jul 7.

PMID:
18602689
10.

Different substitute biomaterials as potential scaffolds in tissue engineering.

Petrovic L, Schlegel AK, Schultze-Mosgau S, Wiltfang J.

Int J Oral Maxillofac Implants. 2006 Mar-Apr;21(2):225-31.

PMID:
16634492
11.

Comparison of short-run cell seeding methods for poly(L-lactide-co-1,5-dioxepan-2-one) scaffold intended for bone tissue engineering.

Xing Z, Xue Y, Dånmark S, Finne-Wistrand A, Arvidson K, Hellem S, Yang ZQ, Mustafa K.

Int J Artif Organs. 2011 May;34(5):432-41. doi: 10.5301/IJAO.2011.8319.

PMID:
21574158
12.

Bone engineering-vitalisation of alloplastic and allogenic bone grafts by human osteoblast-like cells.

Hinze MC, Wiedmann-Al-Ahmad M, Glaum R, Gutwald R, Schmelzeisen R, Sauerbier S.

Br J Oral Maxillofac Surg. 2010 Jul;48(5):369-73. doi: 10.1016/j.bjoms.2009.06.011. Epub 2009 Jul 10.

PMID:
19596502
13.

Electrical regulation of olfactory ensheathing cells using conductive polypyrrole/chitosan polymers.

Qi F, Wang Y, Ma T, Zhu S, Zeng W, Hu X, Liu Z, Huang J, Luo Z.

Biomaterials. 2013 Feb;34(7):1799-809. doi: 10.1016/j.biomaterials.2012.11.042. Epub 2012 Dec 7.

PMID:
23228424
14.

[Electrical stimulation enhances viability of osteoblasts on conductive biodegradable material].

Men J, Deng X, Xu Z.

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2010 Aug;27(4):801-5. Chinese.

PMID:
20842848
15.

Osteoblast behaviour on in situ photopolymerizable three-dimensional scaffolds based on D, L-lactide, epsilon-caprolactone and trimethylene carbonate.

Declercq HA, Cornelissen MJ, Gorskiy TL, Schacht EH.

J Mater Sci Mater Med. 2006 Feb;17(2):113-22.

PMID:
16502243
16.
17.

Calcium phosphate-chitosan composite scaffolds for bone tissue engineering.

Zhang Y, Ni M, Zhang M, Ratner B.

Tissue Eng. 2003 Apr;9(2):337-45.

PMID:
12740096
18.

Alphavbeta integrins play an essential role in BMP-2 induction of osteoblast differentiation.

Lai CF, Cheng SL.

J Bone Miner Res. 2005 Feb;20(2):330-40. Epub 2004 Oct 18.

PMID:
15647827
19.

Global gene expression profile of osteoblast-like cells grown on polyester copolymer scaffolds.

Idris SB, Bolstad AI, Ibrahim SO, Dånmark S, Finne-Wistrand A, Albertsson AC, Arvidson K, Mustafa K.

Tissue Eng Part A. 2011 Nov;17(21-22):2817-31. doi: 10.1089/ten.tea.2010.0660. Epub 2011 Sep 9.

PMID:
21905880
20.

Chitosan/poly(DL,lactide-co-glycolide) scaffolds for tissue engineering.

Martel-Estrada SA, Olivas-Armendáriz I, Martínez-Pérez CA, Hernández T, Acosta-Gómez EI, Chacón-Nava JG, Jiménez-Vega F, García-Casillas PE.

J Mater Sci Mater Med. 2012 Dec;23(12):2893-901. doi: 10.1007/s10856-012-4762-8. Epub 2012 Sep 9.

PMID:
22960878
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk