Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 136

1.

T cell receptor stimulation-induced epigenetic changes and Foxp3 expression are independent and complementary events required for Treg cell development.

Ohkura N, Hamaguchi M, Morikawa H, Sugimura K, Tanaka A, Ito Y, Osaki M, Tanaka Y, Yamashita R, Nakano N, Huehn J, Fehling HJ, Sparwasser T, Nakai K, Sakaguchi S.

Immunity. 2012 Nov 16;37(5):785-99. doi: 10.1016/j.immuni.2012.09.010. Epub 2012 Nov 1.

2.

DNA methylation controls Foxp3 gene expression.

Polansky JK, Kretschmer K, Freyer J, Floess S, Garbe A, Baron U, Olek S, Hamann A, von Boehmer H, Huehn J.

Eur J Immunol. 2008 Jun;38(6):1654-63. doi: 10.1002/eji.200838105.

3.

"Default" generation of neonatal regulatory T cells.

Wang G, Miyahara Y, Guo Z, Khattar M, Stepkowski SM, Chen W.

J Immunol. 2010 Jul 1;185(1):71-8. doi: 10.4049/jimmunol.0903806. Epub 2010 May 24.

4.

Epigenetic control of thymic Treg-cell development.

Kitagawa Y, Ohkura N, Sakaguchi S.

Eur J Immunol. 2015 Jan;45(1):11-6. doi: 10.1002/eji.201444577. Epub 2014 Nov 20. Review.

5.

Regulatory T cells: roles of T cell receptor for their development and function.

Ohkura N, Sakaguchi S.

Semin Immunopathol. 2010 Jun;32(2):95-106. doi: 10.1007/s00281-010-0200-5. Epub 2010 Feb 24. Review.

PMID:
20179931
6.

Epigenetic regulation of Foxp3 expression in regulatory T cells by DNA methylation.

Lal G, Zhang N, van der Touw W, Ding Y, Ju W, Bottinger EP, Reid SP, Levy DE, Bromberg JS.

J Immunol. 2009 Jan 1;182(1):259-73.

7.

Active demethylation of the Foxp3 locus leads to the generation of stable regulatory T cells within the thymus.

Toker A, Engelbert D, Garg G, Polansky JK, Floess S, Miyao T, Baron U, Düber S, Geffers R, Giehr P, Schallenberg S, Kretschmer K, Olek S, Walter J, Weiss S, Hori S, Hamann A, Huehn J.

J Immunol. 2013 Apr 1;190(7):3180-8. doi: 10.4049/jimmunol.1203473. Epub 2013 Feb 18.

8.

Development and maintenance of regulatory T cells.

Ohkura N, Kitagawa Y, Sakaguchi S.

Immunity. 2013 Mar 21;38(3):414-23. doi: 10.1016/j.immuni.2013.03.002. Review.

9.

Peripherally induced Treg: mode, stability, and role in specific tolerance.

Apostolou I, Verginis P, Kretschmer K, Polansky J, Hühn J, von Boehmer H.

J Clin Immunol. 2008 Nov;28(6):619-24. doi: 10.1007/s10875-008-9254-8. Epub 2008 Oct 8.

PMID:
18841451
10.

Epigenetic mechanisms of regulation of Foxp3 expression.

Lal G, Bromberg JS.

Blood. 2009 Oct 29;114(18):3727-35. doi: 10.1182/blood-2009-05-219584. Epub 2009 Jul 29. Review.

11.

Thymic and peripheral differentiation of regulatory T cells.

Lee HM, Bautista JL, Hsieh CS.

Adv Immunol. 2011;112:25-71. doi: 10.1016/B978-0-12-387827-4.00002-4. Review.

PMID:
22118406
12.

Genetic and epigenetic basis of Treg cell development and function: from a FoxP3-centered view to an epigenome-defined view of natural Treg cells.

Morikawa H, Sakaguchi S.

Immunol Rev. 2014 May;259(1):192-205. doi: 10.1111/imr.12174. Review.

PMID:
24712467
13.

Antagonistic nature of T helper 1/2 developmental programs in opposing peripheral induction of Foxp3+ regulatory T cells.

Wei J, Duramad O, Perng OA, Reiner SL, Liu YJ, Qin FX.

Proc Natl Acad Sci U S A. 2007 Nov 13;104(46):18169-74. Epub 2007 Oct 31.

14.

The significantly enhanced frequency of functional CD4+CD25+Foxp3+ T regulatory cells in therapeutic dose aspirin-treated mice.

Javeed A, Zhang B, Qu Y, Zhang A, Sun C, Zhang L, Liu J, Zeng C, Zhao Y.

Transpl Immunol. 2009 Mar;20(4):253-60. doi: 10.1016/j.trim.2008.12.001. Epub 2009 Jan 13.

PMID:
19146957
15.

Induced and thymus-derived Foxp3⁺ regulatory T cells share a common niche.

Huang YJ, Haist V, Baumgärtner W, Föhse L, Prinz I, Suerbaum S, Floess S, Huehn J.

Eur J Immunol. 2014 Feb;44(2):460-8. doi: 10.1002/eji.201343463. Epub 2013 Oct 30.

16.

Preferential development of CD4 and CD8 T regulatory cells in RasGRP1-deficient mice.

Chen X, Priatel JJ, Chow MT, Teh HS.

J Immunol. 2008 May 1;180(9):5973-82.

17.

C6-ceramide in combination with transforming growth factor-β enhances Treg cell differentiation and stable FoxP3 expression in vitro and in vivo.

Kue CS, Lim HX, Jung MY, Hong HJ, Cho D, Kim TS.

Immunobiology. 2013 Jul;218(7):952-9. doi: 10.1016/j.imbio.2012.11.003. Epub 2012 Nov 21.

PMID:
23313049
18.

Epigenetic control of the foxp3 locus in regulatory T cells.

Floess S, Freyer J, Siewert C, Baron U, Olek S, Polansky J, Schlawe K, Chang HD, Bopp T, Schmitt E, Klein-Hessling S, Serfling E, Hamann A, Huehn J.

PLoS Biol. 2007 Feb;5(2):e38.

19.

Foxp3-mediated suppression of CD95L expression confers resistance to activation-induced cell death in regulatory T cells.

Weiss EM, Schmidt A, Vobis D, Garbi N, Lahl K, Mayer CT, Sparwasser T, Ludwig A, Suri-Payer E, Oberle N, Krammer PH.

J Immunol. 2011 Aug 15;187(4):1684-91. doi: 10.4049/jimmunol.1002321. Epub 2011 Jul 11.

20.

IFN-γ production by allogeneic Foxp3+ regulatory T cells is essential for preventing experimental graft-versus-host disease.

Koenecke C, Lee CW, Thamm K, Föhse L, Schafferus M, Mittrücker HW, Floess S, Huehn J, Ganser A, Förster R, Prinz I.

J Immunol. 2012 Sep 15;189(6):2890-6. doi: 10.4049/jimmunol.1200413. Epub 2012 Aug 6.

Items per page

Supplemental Content

Write to the Help Desk