Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 174

Similar articles for PubMed (Select 23122788)

1.

Arbuscular mycorrhizal fungal inoculation increases phenolic synthesis in clover roots via hydrogen peroxide, salicylic acid and nitric oxide signaling pathways.

Zhang RQ, Zhu HH, Zhao HQ, Yao Q.

J Plant Physiol. 2013 Jan 1;170(1):74-9. doi: 10.1016/j.jplph.2012.08.022. Epub 2012 Nov 1.

PMID:
23122788
2.

Arbuscular mycorrhizal symbiosis limits foliar transcriptional responses to viral infection and favors long-term virus accumulation.

Miozzi L, Catoni M, Fiorilli V, Mullineaux PM, Accotto GP, Lanfranco L.

Mol Plant Microbe Interact. 2011 Dec;24(12):1562-72. doi: 10.1094/MPMI-05-11-0116.

3.

Impact of arbuscular mycorrhizal fungal inoculants on subsequent arbuscular mycorrhizal fungi colonization in pot-cultured field pea (Pisum sativum L.).

Jin H, Germida JJ, Walley FL.

Mycorrhiza. 2013 Jan;23(1):45-59. doi: 10.1007/s00572-012-0448-9. Epub 2012 Jun 13.

PMID:
22692547
4.

The microRNA miR171h modulates arbuscular mycorrhizal colonization of Medicago truncatula by targeting NSP2.

Lauressergues D, Delaux PM, Formey D, Lelandais-Brière C, Fort S, Cottaz S, Bécard G, Niebel A, Roux C, Combier JP.

Plant J. 2012 Nov;72(3):512-22. doi: 10.1111/j.1365-313X.2012.05099.x. Epub 2012 Aug 30.

PMID:
22775306
5.

Global and cell-type gene expression profiles in tomato plants colonized by an arbuscular mycorrhizal fungus.

Fiorilli V, Catoni M, Miozzi L, Novero M, Accotto GP, Lanfranco L.

New Phytol. 2009 Dec;184(4):975-87. doi: 10.1111/j.1469-8137.2009.03031.x. Epub 2009 Sep 17.

PMID:
19765230
6.

Arbuscular mycorrhizal symbiosis elicits proteome responses opposite of P-starvation in SO4 grapevine rootstock upon root colonisation with two Glomus species.

Cangahuala-Inocente GC, Da Silva MF, Johnson JM, Manga A, van Tuinen D, Henry C, Lovato PE, Dumas-Gaudot E.

Mycorrhiza. 2011 Aug;21(6):473-93. doi: 10.1007/s00572-010-0352-0. Epub 2011 Jan 6.

PMID:
21210159
7.

Influence of arbuscular mycorrhizal colonisation on cadmium induced Medicago truncatula root isoflavonoid accumulation.

Aloui A, Dumas-Gaudot E, Daher Z, van Tuinen D, Aschi-Smit S, Morandi D.

Plant Physiol Biochem. 2012 Nov;60:233-9. doi: 10.1016/j.plaphy.2012.08.014. Epub 2012 Sep 5.

PMID:
23000816
9.
10.

The exudate from an arbuscular mycorrhizal fungus induces nitric oxide accumulation in Medicago truncatula roots.

Calcagno C, Novero M, Genre A, Bonfante P, Lanfranco L.

Mycorrhiza. 2012 May;22(4):259-69. doi: 10.1007/s00572-011-0400-4. Epub 2011 Jul 9.

PMID:
21744141
11.

A diffusible factor from arbuscular mycorrhizal fungi induces symbiosis-specific MtENOD11 expression in roots of Medicago truncatula.

Kosuta S, Chabaud M, Lougnon G, Gough C, Dénarié J, Barker DG, Bécard G.

Plant Physiol. 2003 Mar;131(3):952-62.

12.

Laser microdissection unravels cell-type-specific transcription in arbuscular mycorrhizal roots, including CAAT-box transcription factor gene expression correlating with fungal contact and spread.

Hogekamp C, Arndt D, Pereira PA, Becker JD, Hohnjec N, Küster H.

Plant Physiol. 2011 Dec;157(4):2023-43. doi: 10.1104/pp.111.186635. Epub 2011 Oct 27.

13.

Lipid metabolism in arbuscular mycorrhizal roots of Medicago truncatula.

Stumpe M, Carsjens JG, Stenzel I, Göbel C, Lang I, Pawlowski K, Hause B, Feussner I.

Phytochemistry. 2005 Apr;66(7):781-91.

PMID:
15797604
14.

A roadmap of cell-type specific gene expression during sequential stages of the arbuscular mycorrhiza symbiosis.

Hogekamp C, Küster H.

BMC Genomics. 2013 May 7;14:306. doi: 10.1186/1471-2164-14-306.

15.

Establishment, persistence and effectiveness of arbuscular mycorrhizal fungal inoculants in the field revealed using molecular genetic tracing and measurement of yield components.

Pellegrino E, Turrini A, Gamper HA, Cafà G, Bonari E, Young JP, Giovannetti M.

New Phytol. 2012 May;194(3):810-22. doi: 10.1111/j.1469-8137.2012.04090.x. Epub 2012 Mar 1.

PMID:
22380845
16.

Nitric oxide signals ROS scavenger-mediated enhancement of PAL activity in nitrogen-deficient Matricaria chamomilla roots: side effects of scavengers.

Kovácik J, Klejdus B, Backor M.

Free Radic Biol Med. 2009 Jun 15;46(12):1686-93. doi: 10.1016/j.freeradbiomed.2009.03.020. Epub 2009 Apr 1.

PMID:
19345259
17.
18.

The effect of Cd on mycorrhizal development and enzyme activity of Glomus mosseae and Glomus intraradices in Astragalus sinicus L.

Li Y, Peng J, Shi P, Zhao B.

Chemosphere. 2009 May;75(7):894-9. doi: 10.1016/j.chemosphere.2009.01.046. Epub 2009 Feb 15.

PMID:
19232430
19.

Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants.

Aroca R, Ruiz-Lozano JM, Zamarreño AM, Paz JA, García-Mina JM, Pozo MJ, López-Ráez JA.

J Plant Physiol. 2013 Jan 1;170(1):47-55. doi: 10.1016/j.jplph.2012.08.020. Epub 2012 Oct 23.

PMID:
23102876
20.

Overlapping expression patterns and differential transcript levels of phosphate transporter genes in arbuscular mycorrhizal, Pi-fertilised and phytohormone-treated Medicago truncatula roots.

Grunwald U, Guo W, Fischer K, Isayenkov S, Ludwig-Müller J, Hause B, Yan X, Küster H, Franken P.

Planta. 2009 Apr;229(5):1023-34. doi: 10.1007/s00425-008-0877-z. Epub 2009 Jan 24.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk