Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 105

Similar articles for PubMed (Select 23107293)

1.

A novel co-infection model with Toxoplasma and Chlamydia trachomatis highlights the importance of host cell manipulation for nutrient scavenging.

Romano JD, de Beaumont C, Carrasco JA, Ehrenman K, Bavoil PM, Coppens I.

Cell Microbiol. 2013 Apr;15(4):619-46. doi: 10.1111/cmi.12060. Epub 2012 Nov 27.

2.

Fierce competition between Toxoplasma and Chlamydia for host cell structures in dually infected cells.

Romano JD, de Beaumont C, Carrasco JA, Ehrenman K, Bavoil PM, Coppens I.

Eukaryot Cell. 2013 Feb;12(2):265-77. doi: 10.1128/EC.00313-12. Epub 2012 Dec 14.

3.
4.

Golgi-associated Rab14, a new regulator for Chlamydia trachomatis infection outcome.

Capmany A, Leiva N, Damiani MT.

Commun Integr Biol. 2011 Sep;4(5):590-3. doi: 10.4161/cib.4.5.16594. Epub 2011 Sep 1.

5.

Herpes simplex virus co-infection-induced Chlamydia trachomatis persistence is not mediated by any known persistence inducer or anti-chlamydial pathway.

Vanover J, Sun J, Deka S, Kintner J, Duffourc MM, Schoborg RV.

Microbiology. 2008 Mar;154(Pt 3):971-8. doi: 10.1099/mic.0.2007/012161-0.

6.

Chlamydia trachomatis Infection Leads to Defined Alterations to the Lipid Droplet Proteome in Epithelial Cells.

Saka HA, Thompson JW, Chen YS, Dubois LG, Haas JT, Moseley A, Valdivia RH.

PLoS One. 2015 Apr 24;10(4):e0124630. doi: 10.1371/journal.pone.0124630. eCollection 2015.

7.

The molecular biology and diagnostics of Chlamydia trachomatis.

Birkelund S.

Dan Med Bull. 1992 Aug;39(4):304-20.

PMID:
1526183
8.

Development of a transformation system for Chlamydia trachomatis: restoration of glycogen biosynthesis by acquisition of a plasmid shuttle vector.

Wang Y, Kahane S, Cutcliffe LT, Skilton RJ, Lambden PR, Clarke IN.

PLoS Pathog. 2011 Sep;7(9):e1002258. doi: 10.1371/journal.ppat.1002258. Epub 2011 Sep 22.

9.
10.

Differential regulation of inflammatory cytokine secretion by human dendritic cells upon Chlamydia trachomatis infection.

Gervassi A, Alderson MR, Suchland R, Maisonneuve JF, Grabstein KH, Probst P.

Infect Immun. 2004 Dec;72(12):7231-9.

11.

Host HDL biogenesis machinery is recruited to the inclusion of Chlamydia trachomatis-infected cells and regulates chlamydial growth.

Cox JV, Naher N, Abdelrahman YM, Belland RJ.

Cell Microbiol. 2012 Oct;14(10):1497-512. doi: 10.1111/j.1462-5822.2012.01823.x. Epub 2012 Jun 26.

12.

Regulation of chlamydial infection by host autophagy and vacuolar ATPase-bearing organelles.

Yasir M, Pachikara ND, Bao X, Pan Z, Fan H.

Infect Immun. 2011 Oct;79(10):4019-28. doi: 10.1128/IAI.05308-11. Epub 2011 Aug 1.

13.

Interaction of herpes simplex virus type 2 (HSV-2) glycoprotein D with the host cell surface is sufficient to induce Chlamydia trachomatis persistence.

Vanover J, Kintner J, Whittimore J, Schoborg RV.

Microbiology. 2010 May;156(Pt 5):1294-302. doi: 10.1099/mic.0.036566-0. Epub 2010 Jan 28.

14.
15.

The cell-penetrating peptide, Pep-1, has activity against intracellular chlamydial growth but not extracellular forms of Chlamydia trachomatis.

Park N, Yamanaka K, Tran D, Chandrangsu P, Akers JC, de Leon JC, Morrissette NS, Selsted ME, Tan M.

J Antimicrob Chemother. 2009 Jan;63(1):115-23. doi: 10.1093/jac/dkn436. Epub 2008 Oct 27.

16.

Inclusion biogenesis and reactivation of persistent Chlamydia trachomatis requires host cell sphingolipid biosynthesis.

Robertson DK, Gu L, Rowe RK, Beatty WL.

PLoS Pathog. 2009 Nov;5(11):e1000664. doi: 10.1371/journal.ppat.1000664. Epub 2009 Nov 20.

17.
18.

Safe haven: the cell biology of nonfusogenic pathogen vacuoles.

Sinai AP, Joiner KA.

Annu Rev Microbiol. 1997;51:415-62. Review.

PMID:
9343356
19.

Up-regulation of the JAK/STAT1 signal pathway during Chlamydia trachomatis infection.

Lad SP, Fukuda EY, Li J, de la Maza LM, Li E.

J Immunol. 2005 Jun 1;174(11):7186-93.

20.
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk