Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 235

1.

Temperature dependent empirical pseudopotential theory for self-assembled quantum dots.

Wang J, Gong M, Guo GC, He L.

J Phys Condens Matter. 2012 Nov 28;24(47):475302. doi: 10.1088/0953-8984/24/47/475302. Epub 2012 Oct 26.

PMID:
23103408
2.

Valence band offset, strain and shape effects on confined states in self-assembled InAs/InP and InAs/GaAs quantum dots.

Zieliński M.

J Phys Condens Matter. 2013 Nov 20;25(46):465301. doi: 10.1088/0953-8984/25/46/465301. Epub 2013 Oct 15.

PMID:
24129261
3.

Band alignment tailoring of InAs1-xSbx/GaAs quantum dots: control of type I to type II transition.

He J, Reyner CJ, Liang BL, Nunna K, Huffaker DL, Pavarelli N, Gradkowski K, Ochalski TJ, Huyet G, Dorogan VG, Mazur YI, Salamo GJ.

Nano Lett. 2010 Aug 11;10(8):3052-6. doi: 10.1021/nl102237n.

PMID:
20698619
4.

An investigation of exciton behavior in type-II self-assembled GaSb/GaAs quantum dots.

Qiu F, Qiu W, Li Y, Wang X, Zhang Y, Zhou X, Lv Y, Sun Y, Deng H, Hu S, Dai N, Wang C, Yang Y, Zhuang Q, Hayne M, Krier A.

Nanotechnology. 2016 Feb 12;27(6):065602. doi: 10.1088/0957-4484/27/6/065602. Epub 2015 Dec 18.

PMID:
26684716
5.

Theory of strain tuning fine structure splitting in self-assembled InAs/GaAs quantum dots.

Wang J, Guo GC, He L.

J Phys Condens Matter. 2014 Nov 26;26(47):475301. doi: 10.1088/0953-8984/26/47/475301. Epub 2014 Oct 23.

PMID:
25339242
6.

Effects of applied magnetic fields and hydrostatic pressure on the optical transitions in self-assembled InAs/GaAs quantum dots.

Duque CA, Porras-Montenegro N, Barticevic Z, Pacheco M, Oliveira LE.

J Phys Condens Matter. 2006 Feb 15;18(6):1877-84. doi: 10.1088/0953-8984/18/6/005. Epub 2006 Jan 24.

PMID:
21697562
7.

Prediction of an excitonic ground state in InAs/InSb quantum dots.

He L, Bester G, Zunger A.

Phys Rev Lett. 2005 Jan 14;94(1):016801. Epub 2005 Jan 3.

PMID:
15698111
8.

Inhomogeneous broadening and alloy intermixing in low proton dose implanted InAs/GaAs self-assembled quantum dots.

Zaâboub Z, Ilahi B, Sfaxi L, Maaref H, Salem B, Aimez V, Morris D.

Nanotechnology. 2008 Jul 16;19(28):285715. doi: 10.1088/0957-4484/19/28/285715. Epub 2008 Jun 3.

PMID:
21828749
9.

Suppression of dislocations by Sb spray in the vicinity of InAs/GaAs quantum dots.

Dai L, Bremner SP, Tan S, Wang S, Zhang G, Liu Z.

Nanoscale Res Lett. 2014 May 30;9(1):278. doi: 10.1186/1556-276X-9-278. eCollection 2014.

10.

Growth of InAs Quantum Dots on Germanium Substrate Using Metal Organic Chemical Vapor Deposition Technique.

Dhawan T, Tyagi R, Bag R, Singh M, Mohan P, Haldar T, Murlidharan R, Tandon R.

Nanoscale Res Lett. 2009 Sep 19;5(1):31-7. doi: 10.1007/s11671-009-9439-y.

11.

Photoluminescence study of type-II InGaPN/GaAs quantum wells.

Kaewket D, Sanorpim S, Tungasmita S, Katayama R, Onabe K.

J Nanosci Nanotechnol. 2010 Nov;10(11):7154-7.

PMID:
21137886
12.

Effect of growth temperature and quantum structure on InAs/GaAs quantum dot solar cell.

Park MH, Kim HS, Park SJ, Song JD, Kim SH, Lee YJ, Choi WJ, Park JH.

J Nanosci Nanotechnol. 2014 Apr;14(4):2955-9.

PMID:
24734716
13.

Recombination dynamics in CdTe/CdSe type-II quantum dots.

Wang CH, Chen TT, Chen YF, Ho ML, Lai CW, Chou PT.

Nanotechnology. 2008 Mar 19;19(11):115702. doi: 10.1088/0957-4484/19/11/115702. Epub 2008 Feb 19.

PMID:
21730562
14.

InAs quantum dots capped by GaAs, In0.4Ga0.6As dots, and In0.2Ga0.8As well.

Fu Y, Wang SM, Ferdos F, Sadeghi M, Larsson A.

J Nanosci Nanotechnol. 2002 Jun-Aug;2(3-4):421-6.

PMID:
12908273
15.

Fine structure of negatively and positively charged excitons in semiconductor quantum dots: electron-hole asymmetry.

Ediger M, Bester G, Gerardot BD, Badolato A, Petroff PM, Karrai K, Zunger A, Warburton RJ.

Phys Rev Lett. 2007 Jan 19;98(3):036808. Epub 2007 Jan 19.

PMID:
17358715
16.

InAs/GaAsSb quantum dot solar cells.

Hatch S, Wu J, Sablon K, Lam P, Tang M, Jiang Q, Liu H.

Opt Express. 2014 May 5;22 Suppl 3:A679-85. doi: 10.1364/OE.22.00A679.

PMID:
24922376
17.

Enhancing optical characteristics of InAs/InGaAsSb quantum dot structures with long-excited state emission at 1.31 μm.

Liu WS, Tseng HL, Kuo PC.

Opt Express. 2014 Aug 11;22(16):18860-9. doi: 10.1364/OE.22.018860.

PMID:
25320972
18.

Impact of N on the atomic-scale Sb distribution in quaternary GaAsSbN-capped InAs quantum dots.

Reyes DF, González D, Ulloa JM, Sales DL, Dominguez L, Mayoral A, Hierro A.

Nanoscale Res Lett. 2012 Nov 27;7(1):653. doi: 10.1186/1556-276X-7-653.

19.

Numerical simulation of electronic properties of coupled quantum dots on wetting layers.

Betcke MM, Voss H.

Nanotechnology. 2008 Apr 23;19(16):165204. doi: 10.1088/0957-4484/19/16/165204. Epub 2008 Mar 18.

PMID:
21825638
20.

Anomalous quantum-confined Stark effects in stacked InAs/GaAs self-assembled quantum dots.

Sheng W, Leburton JP.

Phys Rev Lett. 2002 Apr 22;88(16):167401. Epub 2002 Apr 9.

PMID:
11955264
Items per page

Supplemental Content

Write to the Help Desk