Format
Items per page
Sort by

Send to:

Choose Destination

Links from PubMed

Items: 1 to 20 of 113

1.

High-risk long QT syndrome mutations in the Kv7.1 (KCNQ1) pore disrupt the molecular basis for rapid K(+) permeation.

Burgess DE, Bartos DC, Reloj AR, Campbell KS, Johnson JN, Tester DJ, Ackerman MJ, Fressart V, Denjoy I, Guicheney P, Moss AJ, Ohno S, Horie M, Delisle BP.

Biochemistry. 2012 Nov 13;51(45):9076-85. doi: 10.1021/bi3009449. Epub 2012 Nov 2.

2.

A KCNQ1 mutation contributes to the concealed type 1 long QT phenotype by limiting the Kv7.1 channel conformational changes associated with protein kinase A phosphorylation.

Bartos DC, Giudicessi JR, Tester DJ, Ackerman MJ, Ohno S, Horie M, Gollob MH, Burgess DE, Delisle BP.

Heart Rhythm. 2014 Mar;11(3):459-68. doi: 10.1016/j.hrthm.2013.11.021. Epub 2013 Nov 21.

3.

Mutations in conserved amino acids in the KCNQ1 channel and risk of cardiac events in type-1 long-QT syndrome.

Jons C, Moss AJ, Lopes CM, McNitt S, Zareba W, Goldenberg I, Qi M, Wilde AA, Shimizu W, Kanters JK, Towbin JA, Ackerman MJ, Robinson JL.

J Cardiovasc Electrophysiol. 2009 Aug;20(8):859-65. doi: 10.1111/j.1540-8167.2009.01455.x. Epub 2009 Mar 13.

PMID:
19490272
4.

R231C mutation in KCNQ1 causes long QT syndrome type 1 and familial atrial fibrillation.

Bartos DC, Duchatelet S, Burgess DE, Klug D, Denjoy I, Peat R, Lupoglazoff JM, Fressart V, Berthet M, Ackerman MJ, January CT, Guicheney P, Delisle BP.

Heart Rhythm. 2011 Jan;8(1):48-55. doi: 10.1016/j.hrthm.2010.09.010. Epub 2010 Sep 17.

5.

A double-point mutation in the selectivity filter site of the KCNQ1 potassium channel results in a severe phenotype, LQT1, of long QT syndrome.

Ikrar T, Hanawa H, Watanabe H, Okada S, Aizawa Y, Ramadan MM, Komura S, Yamashita F, Chinushi M, Aizawa Y.

J Cardiovasc Electrophysiol. 2008 May;19(5):541-9. doi: 10.1111/j.1540-8167.2007.01076.x. Epub 2008 Feb 4.

PMID:
18266681
6.
7.

Cellular mechanisms underlying the increased disease severity seen for patients with long QT syndrome caused by compound mutations in KCNQ1.

Harmer SC, Mohal JS, Royal AA, McKenna WJ, Lambiase PD, Tinker A.

Biochem J. 2014 Aug 15;462(1):133-42. doi: 10.1042/BJ20140425.

PMID:
24912595
8.

Long QT 1 mutation KCNQ1A344V increases local anesthetic sensitivity of the slowly activating delayed rectifier potassium current.

Siebrands CC, Binder S, Eckhoff U, Schmitt N, Friederich P.

Anesthesiology. 2006 Sep;105(3):511-20.

PMID:
16931984
9.

Clinical aspects of type-1 long-QT syndrome by location, coding type, and biophysical function of mutations involving the KCNQ1 gene.

Moss AJ, Shimizu W, Wilde AA, Towbin JA, Zareba W, Robinson JL, Qi M, Vincent GM, Ackerman MJ, Kaufman ES, Hofman N, Seth R, Kamakura S, Miyamoto Y, Goldenberg I, Andrews ML, McNitt S.

Circulation. 2007 May 15;115(19):2481-9. Epub 2007 Apr 30.

10.

Impaired ion channel function related to a common KCNQ1 mutation - implications for risk stratification in long QT syndrome 1.

Aidery P, Kisselbach J, Schweizer PA, Becker R, Katus HA, Thomas D.

Gene. 2012 Dec 10;511(1):26-33. doi: 10.1016/j.gene.2012.09.041. Epub 2012 Sep 19.

PMID:
23000022
11.

LQT1 mutations in KCNQ1 C-terminus assembly domain suppress IKs using different mechanisms.

Aromolaran AS, Subramanyam P, Chang DD, Kobertz WR, Colecraft HM.

Cardiovasc Res. 2014 Dec 1;104(3):501-11. doi: 10.1093/cvr/cvu231. Epub 2014 Oct 24.

12.

Dominant-negative control of cAMP-dependent IKs upregulation in human long-QT syndrome type 1.

Heijman J, Spätjens RL, Seyen SR, Lentink V, Kuijpers HJ, Boulet IR, de Windt LJ, David M, Volders PG.

Circ Res. 2012 Jan 20;110(2):211-9. doi: 10.1161/CIRCRESAHA.111.249482. Epub 2011 Nov 17.

13.

Location of mutation in the KCNQ1 and phenotypic presentation of long QT syndrome.

Zareba W, Moss AJ, Sheu G, Kaufman ES, Priori S, Vincent GM, Towbin JA, Benhorin J, Schwartz PJ, Napolitano C, Hall WJ, Keating MT, Qi M, Robinson J, Andrews ML; International LQTS Registry, University of Rochester, Rochester, New York.

J Cardiovasc Electrophysiol. 2003 Nov;14(11):1149-53.

PMID:
14678125
14.

Biophysical characterization of KCNQ1 P320 mutations linked to long QT syndrome 1.

Thomas D, Khalil M, Alter M, Schweizer PA, Karle CA, Wimmer AB, Licka M, Katus HA, Koenen M, Ulmer HE, Zehelein J.

J Mol Cell Cardiol. 2010 Jan;48(1):230-7. doi: 10.1016/j.yjmcc.2009.06.009. Epub 2009 Jun 21.

PMID:
19540844
15.

Identification and characterisation of a novel KCNQ1 mutation in a family with Romano-Ward syndrome.

Zehelein J, Thomas D, Khalil M, Wimmer AB, Koenen M, Licka M, Wu K, Kiehn J, Brockmeier K, Kreye VA, Karle CA, Katus HA, Ulmer HE, Schoels W.

Biochim Biophys Acta. 2004 Nov 5;1690(3):185-92.

16.

Long-QT mutation p.K557E-Kv7.1: dominant-negative suppression of IKs, but preserved cAMP-dependent up-regulation.

Spätjens RL, Bébarová M, Seyen SR, Lentink V, Jongbloed RJ, Arens YH, Heijman J, Volders PG.

Cardiovasc Res. 2014 Oct 1;104(1):216-25. doi: 10.1093/cvr/cvu191. Epub 2014 Aug 18.

17.

Microscopic mechanisms for long QT syndrome type 1 revealed by single-channel analysis of I(Ks) with S3 domain mutations in KCNQ1.

Eldstrom J, Wang Z, Werry D, Wong N, Fedida D.

Heart Rhythm. 2015 Feb;12(2):386-94. doi: 10.1016/j.hrthm.2014.10.029. Epub 2014 Oct 29.

PMID:
25444851
18.

Long QT syndrome: ionic basis and arrhythmia mechanism in long QT syndrome type 1.

Sanguinetti MC.

J Cardiovasc Electrophysiol. 2000 Jun;11(6):710-2.

PMID:
10868746
19.

Long QT syndrome-associated mutations in the voltage sensor of I(Ks) channels.

Henrion U, Strutz-Seebohm N, Duszenko M, Lang F, Seebohm G.

Cell Physiol Biochem. 2009;24(1-2):11-6. doi: 10.1159/000227828. Epub 2009 Jul 1.

PMID:
19590188
20.

Dominant-negative I(Ks) suppression by KCNQ1-deltaF339 potassium channels linked to Romano-Ward syndrome.

Thomas D, Wimmer AB, Karle CA, Licka M, Alter M, Khalil M, Ulmer HE, Kathöfer S, Kiehn J, Katus HA, Schoels W, Koenen M, Zehelein J.

Cardiovasc Res. 2005 Aug 15;67(3):487-97.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk