Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 110

Similar articles for PubMed (Select 23080294)

1.

Heterologous expression of cellobiohydrolase II (Cel6A) in maize endosperm.

Devaiah SP, Requesens DV, Chang YK, Hood KR, Flory A, Howard JA, Hood EE.

Transgenic Res. 2013 Jun;22(3):477-88. doi: 10.1007/s11248-012-9659-2. Epub 2012 Oct 19.

PMID:
23080294
2.

Identification and characterization of core cellulolytic enzymes from Talaromyces cellulolyticus (formerly Acremonium cellulolyticus) critical for hydrolysis of lignocellulosic biomass.

Inoue H, Decker SR, Taylor LE 2nd, Yano S, Sawayama S.

Biotechnol Biofuels. 2014 Oct 9;7(1):151. doi: 10.1186/s13068-014-0151-5. eCollection 2014.

3.

Reversibility of substrate adsorption for the cellulases Cel7A, Cel6A, and Cel7B from Hypocrea jecorina.

Pellegrini VO, Lei N, Kyasaram M, Olsen JP, Badino SF, Windahl MS, Colussi F, Cruys-Bagger N, Borch K, Westh P.

Langmuir. 2014 Oct 28;30(42):12602-9. doi: 10.1021/la5024423. Epub 2014 Oct 16.

PMID:
25322452
4.

Systems biology defines the biological significance of redox-active proteins during cellulose degradation in an aerobic bacterium.

Gardner JG, Crouch L, Labourel A, Forsberg Z, Bukhman YV, Vaaje-Kolstad G, Gilbert HJ, Keating DH.

Mol Microbiol. 2014 Oct 8. doi: 10.1111/mmi.12821. [Epub ahead of print]

PMID:
25294408
5.

Purification and characterization of recombinant Cel7A from maize seed.

Hood NC, Hood KR, Woodard SL, Devaiah SP, Jeoh T, Wilken L, Nikolov Z, Egelkrout E, Howard JA, Hood EE.

Appl Biochem Biotechnol. 2014 Dec;174(8):2864-74. doi: 10.1007/s12010-014-1232-4. Epub 2014 Sep 24.

PMID:
25248991
6.

Engineered thermostable fungal cellulases exhibit efficient synergistic cellulose hydrolysis at elevated temperatures.

Trudeau DL, Lee TM, Arnold FH.

Biotechnol Bioeng. 2014 Dec;111(12):2390-7. doi: 10.1002/bit.25308. Epub 2014 Aug 5.

PMID:
24916885
7.

In situ stability of substrate-associated cellulases studied by DSC.

Alasepp K, Borch K, Cruys-Bagger N, Badino S, Jensen K, Sørensen TH, Windahl MS, Westh P.

Langmuir. 2014 Jun 24;30(24):7134-42. doi: 10.1021/la500161e. Epub 2014 Jun 10.

PMID:
24856176
8.

A pyranose dehydrogenase-based biosensor for kinetic analysis of enzymatic hydrolysis of cellulose by cellulases.

Cruys-Bagger N, Badino SF, Tokin R, Gontsarik M, Fathalinejad S, Jensen K, Toscano MD, Sørensen TH, Borch K, Tatsumi H, Väljamäe P, Westh P.

Enzyme Microb Technol. 2014 May 10;58-59:68-74. doi: 10.1016/j.enzmictec.2014.03.002. Epub 2014 Mar 12.

PMID:
24731827
9.

Cellulases without carbohydrate-binding modules in high consistency ethanol production process.

Pakarinen A, Haven MO, Djajadi DT, Várnai A, Puranen T, Viikari L.

Biotechnol Biofuels. 2014 Feb 21;7(1):27. doi: 10.1186/1754-6834-7-27.

10.

A graphene screen-printed carbon electrode for real-time measurements of unoccupied active sites in a cellulase.

Cruys-Bagger N, Tatsumi H, Borch K, Westh P.

Anal Biochem. 2014 Feb 15;447:162-8. doi: 10.1016/j.ab.2013.11.024. Epub 2013 Dec 1.

PMID:
24299990
12.

Efficient recovery of recombinant proteins from cereal endosperm is affected by interaction with endogenous storage proteins.

Peters J, Sabalza M, Ramessar K, Christou P, Capell T, Stöger E, Arcalís E.

Biotechnol J. 2013 Oct;8(10):1203-12. doi: 10.1002/biot.201300068. Epub 2013 Sep 17.

PMID:
23960004
13.

A steady-state theory for processive cellulases.

Cruys-Bagger N, Elmerdahl J, Praestgaard E, Borch K, Westh P.

FEBS J. 2013 Aug;280(16):3952-61. doi: 10.1111/febs.12397. Epub 2013 Jul 12.

PMID:
23786663
14.

Structural characterization of a unique marine animal family 7 cellobiohydrolase suggests a mechanism of cellulase salt tolerance.

Kern M, McGeehan JE, Streeter SD, Martin RN, Besser K, Elias L, Eborall W, Malyon GP, Payne CM, Himmel ME, Schnorr K, Beckham GT, Cragg SM, Bruce NC, McQueen-Mason SJ.

Proc Natl Acad Sci U S A. 2013 Jun 18;110(25):10189-94. doi: 10.1073/pnas.1301502110. Epub 2013 Jun 3.

15.

Hypocrea jecorina cellobiohydrolase I stabilizing mutations identified using noncontiguous recombination.

Smith MA, Bedbrook CN, Wu T, Arnold FH.

ACS Synth Biol. 2013 Dec 20;2(12):690-6. doi: 10.1021/sb400010m. Epub 2013 Jun 3.

PMID:
23688124
16.

Role of cysteine residues in thermal inactivation of fungal Cel6A cellobiohydrolases.

Wu I, Heel T, Arnold FH.

Biochim Biophys Acta. 2013 Aug;1834(8):1539-44. doi: 10.1016/j.bbapap.2013.05.003. Epub 2013 May 12.

PMID:
23676789
17.

Binding site dynamics and aromatic-carbohydrate interactions in processive and non-processive family 7 glycoside hydrolases.

Taylor CB, Payne CM, Himmel ME, Crowley MF, McCabe C, Beckham GT.

J Phys Chem B. 2013 May 2;117(17):4924-33. doi: 10.1021/jp401410h. Epub 2013 Apr 10.

PMID:
23534900
18.

Computational investigation of the pH dependence of loop flexibility and catalytic function in glycoside hydrolases.

Bu L, Crowley MF, Himmel ME, Beckham GT.

J Biol Chem. 2013 Apr 26;288(17):12175-86. doi: 10.1074/jbc.M113.462465. Epub 2013 Mar 15.

19.

Preferential adsorption and activity of monocomponent cellulases on lignocellulose thin films with varying lignin content.

Martín-Sampedro R, Rahikainen JL, Johansson LS, Marjamaa K, Laine J, Kruus K, Rojas OJ.

Biomacromolecules. 2013 Apr 8;14(4):1231-9. doi: 10.1021/bm400230s. Epub 2013 Mar 25.

PMID:
23484974
20.

The differential transcription network between embryo and endosperm in the early developing maize seed.

Lu X, Chen D, Shu D, Zhang Z, Wang W, Klukas C, Chen LL, Fan Y, Chen M, Zhang C.

Plant Physiol. 2013 May;162(1):440-55. doi: 10.1104/pp.113.214874. Epub 2013 Mar 11.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk