Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 215

1.

14-3-3 proteins SGF14c and SGF14l play critical roles during soybean nodulation.

Radwan O, Wu X, Govindarajulu M, Libault M, Neece DJ, Oh MH, Berg RH, Stacey G, Taylor CG, Huber SC, Clough SJ.

Plant Physiol. 2012 Dec;160(4):2125-36. doi: 10.1104/pp.112.207027. Epub 2012 Oct 11.

2.

Transient Nod factor-dependent gene expression in the nodulation-competent zone of soybean (Glycine max [L.] Merr.) roots.

Hayashi S, Reid DE, Lorenc MT, Stiller J, Edwards D, Gresshoff PM, Ferguson BJ.

Plant Biotechnol J. 2012 Oct;10(8):995-1010. doi: 10.1111/j.1467-7652.2012.00729.x. Epub 2012 Aug 2.

3.

Large-scale analysis of putative soybean regulatory gene expression identifies a Myb gene involved in soybean nodule development.

Libault M, Joshi T, Takahashi K, Hurley-Sommer A, Puricelli K, Blake S, Finger RE, Taylor CG, Xu D, Nguyen HT, Stacey G.

Plant Physiol. 2009 Nov;151(3):1207-20. doi: 10.1104/pp.109.144030. Epub 2009 Sep 15.

4.

GS52 ecto-apyrase plays a critical role during soybean nodulation.

Govindarajulu M, Kim SY, Libault M, Berg RH, Tanaka K, Stacey G, Taylor CG.

Plant Physiol. 2009 Feb;149(2):994-1004. doi: 10.1104/pp.108.128728. Epub 2008 Nov 26.

5.

The high-affinity phosphate transporter GmPT5 regulates phosphate transport to nodules and nodulation in soybean.

Qin L, Zhao J, Tian J, Chen L, Sun Z, Guo Y, Lu X, Gu M, Xu G, Liao H.

Plant Physiol. 2012 Aug;159(4):1634-43. doi: 10.1104/pp.112.199786. Epub 2012 Jun 27.

6.

A dual-targeted soybean protein is involved in Bradyrhizobium japonicum infection of soybean root hair and cortical cells.

Libault M, Govindarajulu M, Berg RH, Ong YT, Puricelli K, Taylor CG, Xu D, Stacey G.

Mol Plant Microbe Interact. 2011 Sep;24(9):1051-60. doi: 10.1094/MPMI-12-10-0281.

7.

Differential expression of two soybean apyrases, one of which is an early nodulin.

Day RB, McAlvin CB, Loh JT, Denny RL, Wood TC, Young ND, Stacey G.

Mol Plant Microbe Interact. 2000 Oct;13(10):1053-70.

8.

Specific subunits of heterotrimeric G proteins play important roles during nodulation in soybean.

Choudhury SR, Pandey S.

Plant Physiol. 2013 May;162(1):522-33. doi: 10.1104/pp.113.215400. Epub 2013 Apr 8.

9.

A soybean acyl carrier protein, GmACP, is important for root nodule symbiosis.

Wang J, Tóth K, Tanaka K, Nguyen CT, Yan Z, Brechenmacher L, Dahmen J, Chen M, Thelen JJ, Qiu L, Stacey G.

Mol Plant Microbe Interact. 2014 May;27(5):415-23. doi: 10.1094/MPMI-09-13-0269-R.

10.

Whole genome co-expression analysis of soybean cytochrome P450 genes identifies nodulation-specific P450 monooxygenases.

Guttikonda SK, Trupti J, Bisht NC, Chen H, An YQ, Pandey S, Xu D, Yu O.

BMC Plant Biol. 2010 Nov 9;10:243. doi: 10.1186/1471-2229-10-243.

11.

Promoters of orthologous Glycine max and Lotus japonicus nodulation autoregulation genes interchangeably drive phloem-specific expression in transgenic plants.

Nontachaiyapoom S, Scott PT, Men AE, Kinkema M, Schenk PM, Gresshoff PM.

Mol Plant Microbe Interact. 2007 Jul;20(7):769-80.

12.

A thaumatin-like protein, Rj4, controls nodule symbiotic specificity in soybean.

Hayashi M, Shiro S, Kanamori H, Mori-Hosokawa S, Sasaki-Yamagata H, Sayama T, Nishioka M, Takahashi M, Ishimoto M, Katayose Y, Kaga A, Harada K, Kouchi H, Saeki Y, Umehara Y.

Plant Cell Physiol. 2014 Sep;55(9):1679-89. doi: 10.1093/pcp/pcu099. Epub 2014 Jul 23.

PMID:
25059584
13.

Soybean ureases, but not that of Bradyrhizobium japonicum, are involved in the process of soybean root nodulation.

Medeiros-Silva M, Franck WL, Borba MP, Pizzato SB, Strodtman KN, Emerich DW, Stacey G, Polacco JC, Carlini CR.

J Agric Food Chem. 2014 Apr 23;62(16):3517-24. doi: 10.1021/jf5000612. Epub 2014 Apr 9.

PMID:
24716625
14.

Inoculation- and nitrate-induced CLE peptides of soybean control NARK-dependent nodule formation.

Reid DE, Ferguson BJ, Gresshoff PM.

Mol Plant Microbe Interact. 2011 May;24(5):606-18. doi: 10.1094/MPMI-09-10-0207.

15.

GmEXPB2, a Cell Wall β-Expansin, Affects Soybean Nodulation through Modifying Root Architecture and Promoting Nodule Formation and Development.

Li X, Zhao J, Tan Z, Zeng R, Liao H.

Plant Physiol. 2015 Dec;169(4):2640-53. doi: 10.1104/pp.15.01029. Epub 2015 Oct 2.

16.

Functional analysis of duplicated Symbiosis Receptor Kinase (SymRK) genes during nodulation and mycorrhizal infection in soybean (Glycine max).

Indrasumunar A, Wilde J, Hayashi S, Li D, Gresshoff PM.

J Plant Physiol. 2015 Mar 15;176:157-68. doi: 10.1016/j.jplph.2015.01.002. Epub 2015 Jan 8.

PMID:
25617765
17.

Identification of microRNAs and their mRNA targets during soybean nodule development: functional analysis of the role of miR393j-3p in soybean nodulation.

Yan Z, Hossain MS, Arikit S, Valdés-López O, Zhai J, Wang J, Libault M, Ji T, Qiu L, Meyers BC, Stacey G.

New Phytol. 2015 Aug;207(3):748-59. doi: 10.1111/nph.13365. Epub 2015 Mar 17.

18.

Transcription profiling of soybean nodulation by Bradyrhizobium japonicum.

Brechenmacher L, Kim MY, Benitez M, Li M, Joshi T, Calla B, Lee MP, Libault M, Vodkin LO, Xu D, Lee SH, Clough SJ, Stacey G.

Mol Plant Microbe Interact. 2008 May;21(5):631-45. doi: 10.1094/MPMI-21-5-0631.

19.

Quantitative phosphoproteomic analysis of soybean root hairs inoculated with Bradyrhizobium japonicum.

Nguyen TH, Brechenmacher L, Aldrich JT, Clauss TR, Gritsenko MA, Hixson KK, Libault M, Tanaka K, Yang F, Yao Q, Pasa-Tolić L, Xu D, Nguyen HT, Stacey G.

Mol Cell Proteomics. 2012 Nov;11(11):1140-55. doi: 10.1074/mcp.M112.018028. Epub 2012 Jul 25.

20.

Soybean ureide transporters play a critical role in nodule development, function and nitrogen export.

Collier R, Tegeder M.

Plant J. 2012 Nov;72(3):355-67. doi: 10.1111/j.1365-313X.2012.05086.x. Epub 2012 Aug 9.

Items per page

Supplemental Content

Write to the Help Desk