Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 142

1.

Two clinical isolates of Candida glabrata exhibiting reduced sensitivity to amphotericin B both harbor mutations in ERG2.

Hull CM, Bader O, Parker JE, Weig M, Gross U, Warrilow AG, Kelly DE, Kelly SL.

Antimicrob Agents Chemother. 2012 Dec;56(12):6417-21. doi: 10.1128/AAC.01145-12. Epub 2012 Oct 1.

2.

Molecular mechanisms of drug resistance in clinical Candida species isolated from Tunisian hospitals.

Eddouzi J, Parker JE, Vale-Silva LA, Coste A, Ischer F, Kelly S, Manai M, Sanglard D.

Antimicrob Agents Chemother. 2013 Jul;57(7):3182-93. doi: 10.1128/AAC.00555-13. Epub 2013 Apr 29.

3.

Facultative sterol uptake in an ergosterol-deficient clinical isolate of Candida glabrata harboring a missense mutation in ERG11 and exhibiting cross-resistance to azoles and amphotericin B.

Hull CM, Parker JE, Bader O, Weig M, Gross U, Warrilow AG, Kelly DE, Kelly SL.

Antimicrob Agents Chemother. 2012 Aug;56(8):4223-32. doi: 10.1128/AAC.06253-11. Epub 2012 May 21.

4.

The activity of echinocandins, amphotericin B and voriconazole against fluconazole-susceptible and fluconazole-resistant Brazilian Candida glabrata isolates.

Mario DA, Denardi LB, Bandeira LA, Antunes MS, Santurio JM, Severo LC, Alves SH.

Mem Inst Oswaldo Cruz. 2012 May;107(3):433-6.

5.
6.

Fluconazole exposure rather than clonal spreading is correlated with the emergence of Candida glabrata with cross-resistance to triazole antifungal agents.

Chen TC, Chen YH, Chen YC, Lu PL.

Kaohsiung J Med Sci. 2012 Jun;28(6):306-15. doi: 10.1016/j.kjms.2011.11.011. Epub 2012 Apr 4.

7.

Identification and characterization of four azole-resistant erg3 mutants of Candida albicans.

Martel CM, Parker JE, Bader O, Weig M, Gross U, Warrilow AG, Rolley N, Kelly DE, Kelly SL.

Antimicrob Agents Chemother. 2010 Nov;54(11):4527-33. doi: 10.1128/AAC.00348-10. Epub 2010 Aug 23.

8.

STB5 is a negative regulator of azole resistance in Candida glabrata.

Noble JA, Tsai HF, Suffis SD, Su Q, Myers TG, Bennett JE.

Antimicrob Agents Chemother. 2013 Feb;57(2):959-67. doi: 10.1128/AAC.01278-12. Epub 2012 Dec 10.

9.

UPC2A is required for high-level azole antifungal resistance in Candida glabrata.

Whaley SG, Caudle KE, Vermitsky JP, Chadwick SG, Toner G, Barker KS, Gygax SE, Rogers PD.

Antimicrob Agents Chemother. 2014 Aug;58(8):4543-54. doi: 10.1128/AAC.02217-13. Epub 2014 May 27.

10.

Assessment of the in vitro kinetic activity of caspofungin against Candida glabrata.

Nagappan V, Boikov D, Vazquez JA.

Antimicrob Agents Chemother. 2010 Jan;54(1):522-5. doi: 10.1128/AAC.01339-08. Epub 2009 Oct 19.

11.

Candida albicans and Candida glabrata clinical isolates exhibiting reduced echinocandin susceptibility.

Katiyar S, Pfaller M, Edlind T.

Antimicrob Agents Chemother. 2006 Aug;50(8):2892-4.

12.

Reliability of the Vitek 2 yeast susceptibility test for detection of in vitro resistance to fluconazole and voriconazole in clinical isolates of Candida albicans and Candida glabrata.

Posteraro B, Martucci R, La Sorda M, Fiori B, Sanglard D, De Carolis E, Florio AR, Fadda G, Sanguinetti M.

J Clin Microbiol. 2009 Jun;47(6):1927-30. doi: 10.1128/JCM.02070-08. Epub 2009 Apr 29.

13.

Rapid acquisition of stable azole resistance by Candida glabrata isolates obtained before the clinical introduction of fluconazole.

Borst A, Raimer MT, Warnock DW, Morrison CJ, Arthington-Skaggs BA.

Antimicrob Agents Chemother. 2005 Feb;49(2):783-7.

14.

Genome-wide expression profiling reveals genes associated with amphotericin B and fluconazole resistance in experimentally induced antifungal resistant isolates of Candida albicans.

Barker KS, Crisp S, Wiederhold N, Lewis RE, Bareither B, Eckstein J, Barbuch R, Bard M, Rogers PD.

J Antimicrob Chemother. 2004 Aug;54(2):376-85. Epub 2004 Jun 16.

15.
16.

Mechanisms of azole resistance in clinical isolates of Candida glabrata collected during a hospital survey of antifungal resistance.

Sanguinetti M, Posteraro B, Fiori B, Ranno S, Torelli R, Fadda G.

Antimicrob Agents Chemother. 2005 Feb;49(2):668-79.

17.

In vitro activity of voriconazole and other antifungal agents against clinical isolates of Candida glabrata and Candida krusei.

Drago M, Scaltrito MM, Morace G; GISIA-2 Group.

Eur J Clin Microbiol Infect Dis. 2004 Aug;23(8):619-24. Epub 2004 Jul 16.

PMID:
15258831
18.

Mechanisms of azole resistance among clinical isolates of Candida glabrata in Poland.

Szweda P, Gucwa K, Romanowska E, Dzierzanowska-Fangrat K, Naumiuk Ł, Brillowska-Dabrowska A, Wojciechowska-Koszko I, Milewski S.

J Med Microbiol. 2015 Jun;64(6):610-9. doi: 10.1099/jmm.0.000062. Epub 2015 Mar 27.

PMID:
25818698
19.

The Candida glabrata putative sterol transporter gene CgAUS1 protects cells against azoles in the presence of serum.

Nakayama H, Tanabe K, Bard M, Hodgson W, Wu S, Takemori D, Aoyama T, Kumaraswami NS, Metzler L, Takano Y, Chibana H, Niimi M.

J Antimicrob Chemother. 2007 Dec;60(6):1264-72. Epub 2007 Oct 2.

20.

Voriconazole-induced inhibition of the fungicidal activity of amphotericin B in Candida strains with reduced susceptibility to voriconazole: an effect not predicted by the MIC value alone.

Lignell A, Löwdin E, Cars O, Sanglard D, Sjölin J.

Antimicrob Agents Chemother. 2011 Apr;55(4):1629-37. doi: 10.1128/AAC.00791-10. Epub 2011 Jan 31.

Items per page

Supplemental Content

Write to the Help Desk