Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 115

Similar articles for PubMed (Select 23026556)

1.

Staphylococcus haemolyticus prophage ΦSH2 endolysin relies on cysteine, histidine-dependent amidohydrolases/peptidases activity for lysis 'from without'.

Schmelcher M, Korobova O, Schischkova N, Kiseleva N, Kopylov P, Pryamchuk S, Donovan DM, Abaev I.

J Biotechnol. 2012 Dec 31;162(2-3):289-98. doi: 10.1016/j.jbiotec.2012.09.010. Epub 2012 Sep 28.

2.

LambdaSa2 prophage endolysin requires Cpl-7-binding domains and amidase-5 domain for antimicrobial lysis of streptococci.

Donovan DM, Foster-Frey J.

FEMS Microbiol Lett. 2008 Oct;287(1):22-33. doi: 10.1111/j.1574-6968.2008.01287.x. Epub 2008 Jul 31.

3.

LysK CHAP endopeptidase domain is required for lysis of live staphylococcal cells.

Becker SC, Dong S, Baker JR, Foster-Frey J, Pritchard DG, Donovan DM.

FEMS Microbiol Lett. 2009 May;294(1):52-60. doi: 10.1111/j.1574-6968.2009.01541.x. Epub 2008 Mar 10.

4.

Chimeric phage lysins act synergistically with lysostaphin to kill mastitis-causing Staphylococcus aureus in murine mammary glands.

Schmelcher M, Powell AM, Becker SC, Camp MJ, Donovan DM.

Appl Environ Microbiol. 2012 Apr;78(7):2297-305. doi: 10.1128/AEM.07050-11. Epub 2012 Jan 27.

5.

Lytic activity of the recombinant staphylococcal bacteriophage PhiH5 endolysin active against Staphylococcus aureus in milk.

Obeso JM, Martínez B, Rodríguez A, García P.

Int J Food Microbiol. 2008 Dec 10;128(2):212-8. doi: 10.1016/j.ijfoodmicro.2008.08.010. Epub 2008 Aug 26.

PMID:
18809219
6.

Lytic activity of the staphylolytic Twort phage endolysin CHAP domain is enhanced by the SH3b cell wall binding domain.

Becker SC, Swift S, Korobova O, Schischkova N, Kopylov P, Donovan DM, Abaev I.

FEMS Microbiol Lett. 2015 Jan;362(1):1-8. doi: 10.1093/femsle/fnu019. Epub 2014 Dec 4.

PMID:
25790497
7.

Enhanced staphylolytic activity of the Staphylococcus aureus bacteriophage vB_SauS-phiIPLA88 HydH5 virion-associated peptidoglycan hydrolase: fusions, deletions, and synergy with LysH5.

Rodríguez-Rubio L, Martínez B, Rodríguez A, Donovan DM, García P.

Appl Environ Microbiol. 2012 Apr;78(7):2241-8. doi: 10.1128/AEM.07621-11. Epub 2012 Jan 20.

8.

Crystal structure of the lytic CHAP(K) domain of the endolysin LysK from Staphylococcus aureus bacteriophage K.

Sanz-Gaitero M, Keary R, Garcia-Doval C, Coffey A, van Raaij MJ.

Virol J. 2014 Jul 26;11:133. doi: 10.1186/1743-422X-11-133.

9.

Peptidoglycan hydrolase fusions maintain their parental specificities.

Donovan DM, Dong S, Garrett W, Rousseau GM, Moineau S, Pritchard DG.

Appl Environ Microbiol. 2006 Apr;72(4):2988-96.

10.

Phage endolysins with broad antimicrobial activity against Enterococcus faecalis clinical strains.

Proença D, Fernandes S, Leandro C, Silva FA, Santos S, Lopes F, Mato R, Cavaco-Silva P, Pimentel M, São-José C.

Microb Drug Resist. 2012 Jun;18(3):322-32. doi: 10.1089/mdr.2012.0024. Epub 2012 Apr 5.

PMID:
22480295
11.

Lysis of staphylococcal mastitis pathogens by bacteriophage phi11 endolysin.

Donovan DM, Lardeo M, Foster-Frey J.

FEMS Microbiol Lett. 2006 Dec;265(1):133-9. Epub 2006 Oct 19.

12.

The two-component cell lysis genes holWMY and lysWMY of the Staphylococcus warneri M phage varphiWMY: cloning, sequencing, expression, and mutational analysis in Escherichia coli.

Yokoi KJ, Kawahigashi N, Uchida M, Sugahara K, Shinohara M, Kawasaki K, Nakamura S, Taketo A, Kodaira K.

Gene. 2005 May 23;351:97-108. Epub 2005 Apr 19.

PMID:
15848115
13.

The cell lysis activity of the Streptococcus agalactiae bacteriophage B30 endolysin relies on the cysteine, histidine-dependent amidohydrolase/peptidase domain.

Donovan DM, Foster-Frey J, Dong S, Rousseau GM, Moineau S, Pritchard DG.

Appl Environ Microbiol. 2006 Jul;72(7):5108-12.

14.

A novel bacteriophage Tail-Associated Muralytic Enzyme (TAME) from Phage K and its development into a potent antistaphylococcal protein.

Paul VD, Rajagopalan SS, Sundarrajan S, George SE, Asrani JY, Pillai R, Chikkamadaiah R, Durgaiah M, Sriram B, Padmanabhan S.

BMC Microbiol. 2011 Oct 11;11:226. doi: 10.1186/1471-2180-11-226.

15.

Novel chimerical endolysins with broad antimicrobial activity against methicillin-resistant Staphylococcus aureus.

Fernandes S, Proença D, Cantante C, Silva FA, Leandro C, Lourenço S, Milheiriço C, de Lencastre H, Cavaco-Silva P, Pimentel M, São-José C.

Microb Drug Resist. 2012 Jun;18(3):333-43. doi: 10.1089/mdr.2012.0025. Epub 2012 Mar 20.

PMID:
22432707
16.

Crystallization of the CHAP domain of the endolysin from Staphylococcus aureus bacteriophage K.

Sanz-Gaitero M, Keary R, Garcia-Doval C, Coffey A, van Raaij MJ.

Acta Crystallogr Sect F Struct Biol Cryst Commun. 2013 Dec;69(Pt 12):1393-6. doi: 10.1107/S1744309113030133. Epub 2013 Nov 29.

PMID:
24316838
17.

Structure and lytic activity of a Bacillus anthracis prophage endolysin.

Low LY, Yang C, Perego M, Osterman A, Liddington RC.

J Biol Chem. 2005 Oct 21;280(42):35433-9. Epub 2005 Aug 15.

18.

Lytic activity of the virion-associated peptidoglycan hydrolase HydH5 of Staphylococcus aureus bacteriophage vB_SauS-phiIPLA88.

Rodríguez L, Martínez B, Zhou Y, Rodríguez A, Donovan DM, García P.

BMC Microbiol. 2011 Jun 17;11:138. doi: 10.1186/1471-2180-11-138.

19.

Structural and biochemical characterization reveals LysGH15 as an unprecedented "EF-hand-like" calcium-binding phage lysin.

Gu J, Feng Y, Feng X, Sun C, Lei L, Ding W, Niu F, Jiao L, Yang M, Li Y, Liu X, Song J, Cui Z, Han D, Du C, Yang Y, Ouyang S, Liu ZJ, Han W.

PLoS Pathog. 2014 May 15;10(5):e1004109. doi: 10.1371/journal.ppat.1004109. eCollection 2014 May.

20.

Differentially conserved staphylococcal SH3b_5 cell wall binding domains confer increased staphylolytic and streptolytic activity to a streptococcal prophage endolysin domain.

Becker SC, Foster-Frey J, Stodola AJ, Anacker D, Donovan DM.

Gene. 2009 Aug 15;443(1-2):32-41. doi: 10.1016/j.gene.2009.04.023. Epub 2009 May 5.

PMID:
19422893
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk