Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 109

1.

Comprehensive molecular motion capture for sphingomyelin by site-specific deuterium labeling.

Matsumori N, Yasuda T, Okazaki H, Suzuki T, Yamaguchi T, Tsuchikawa H, Doi M, Oishi T, Murata M.

Biochemistry. 2012 Oct 23;51(42):8363-70. doi: 10.1021/bi3009399. Epub 2012 Oct 10.

PMID:
23016915
2.

Detailed comparison of deuterium quadrupole profiles between sphingomyelin and phosphatidylcholine bilayers.

Yasuda T, Kinoshita M, Murata M, Matsumori N.

Biophys J. 2014 Feb 4;106(3):631-8. doi: 10.1016/j.bpj.2013.12.034.

3.

Sphingomyelin chain length influences the distribution of GPI-anchored proteins in rafts in supported lipid bilayers.

Garner AE, Smith DA, Hooper NM.

Mol Membr Biol. 2007 May-Jun;24(3):233-42.

PMID:
17520480
4.

Raftlike mixtures of sphingomyelin and cholesterol investigated by solid-state 2H NMR spectroscopy.

Bartels T, Lankalapalli RS, Bittman R, Beyer K, Brown MF.

J Am Chem Soc. 2008 Nov 5;130(44):14521-32. doi: 10.1021/ja801789t. Epub 2008 Oct 8.

5.

Real-time analysis of the effects of cholesterol on lipid raft behavior using atomic force microscopy.

Lawrence JC, Saslowsky DE, Edwardson JM, Henderson RM.

Biophys J. 2003 Mar;84(3):1827-32.

6.

Fluorinated cholesterol retains domain-forming activity in sphingomyelin bilayers.

Matsumori N, Okazaki H, Nomura K, Murata M.

Chem Phys Lipids. 2011 Jul;164(5):401-8. doi: 10.1016/j.chemphyslip.2011.05.007. Epub 2011 Jun 1.

PMID:
21664344
7.

Cholesterol dynamics in membranes of raft composition: a molecular point of view from 2H and 31P solid-state NMR.

Aussenac F, Tavares M, Dufourc EJ.

Biochemistry. 2003 Feb 18;42(6):1383-90.

PMID:
12578350
8.

Structure and dynamics of sphingomyelin bilayer: insight gained through systematic comparison to phosphatidylcholine.

Niemelä P, Hyvönen MT, Vattulainen I.

Biophys J. 2004 Nov;87(5):2976-89. Epub 2004 Aug 17.

9.
10.
11.

Non-raft forming sphingomyelin-cholesterol mixtures.

Epand RM, Epand RF.

Chem Phys Lipids. 2004 Nov;132(1):37-46.

PMID:
15530446
12.

Sphingomyelin-cholesterol domains in phospholipid membranes: atomistic simulation.

Pandit SA, Vasudevan S, Chiu SW, Mashl RJ, Jakobsson E, Scott HL.

Biophys J. 2004 Aug;87(2):1092-100.

13.
14.

Role of glycolipids in lipid rafts: a view through atomistic molecular dynamics simulations with galactosylceramide.

Hall A, Róg T, Karttunen M, Vattulainen I.

J Phys Chem B. 2010 Jun 17;114(23):7797-807. doi: 10.1021/jp912175d.

PMID:
20496924
15.

Liquid-ordered phase formation in cholesterol/sphingomyelin bilayers: all-atom molecular dynamics simulations.

Zidar J, Merzel F, Hodoscek M, Rebolj K, Sepcić K, Macek P, Janezic D.

J Phys Chem B. 2009 Dec 3;113(48):15795-802. doi: 10.1021/jp907138h.

PMID:
19929009
16.
17.

Phase diagrams of lipid mixtures relevant to the study of membrane rafts.

Goñi FM, Alonso A, Bagatolli LA, Brown RE, Marsh D, Prieto M, Thewalt JL.

Biochim Biophys Acta. 2008 Nov-Dec;1781(11-12):665-84. doi: 10.1016/j.bbalip.2008.09.002. Epub 2008 Oct 7. Review.

18.

Synergistic perturbation of phosphatidylcholine/sphingomyelin bilayers by diacylglycerol and cholesterol.

Armstrong DL, Borchardt DB, Zidovetzki R.

Biochem Biophys Res Commun. 2002 Aug 30;296(4):806-12.

PMID:
12200119
19.

Structure of sphingomyelin bilayers and complexes with cholesterol forming membrane rafts.

Quinn PJ.

Langmuir. 2013 Jul 30;29(30):9447-56. doi: 10.1021/la4018129. Epub 2013 Jul 17.

PMID:
23863113
20.

Targeting of Helicobacter pylori vacuolating toxin to lipid raft membrane domains analysed by atomic force microscopy.

Geisse NA, Cover TL, Henderson RM, Edwardson JM.

Biochem J. 2004 Aug 1;381(Pt 3):911-7.

Items per page

Supplemental Content

Write to the Help Desk