Format
Items per page
Sort by

Send to:

Choose Destination

Links from PubMed

Items: 1 to 20 of 85

1.
2.
3.

Morphologic characterization of rat taste receptor cells that express components of the phospholipase C signaling pathway.

Clapp TR, Yang R, Stoick CL, Kinnamon SC, Kinnamon JC.

J Comp Neurol. 2004 Jan 12;468(3):311-21.

PMID:
14681927
4.

Novel real-time sensors to quantitatively assess in vivo inositol 1,4,5-trisphosphate production in intact cells.

Sugimoto K, Nishida M, Otsuka M, Makino K, Ohkubo K, Mori Y, Morii T.

Chem Biol. 2004 Apr;11(4):475-85.

5.

Phospholipase C of Cryptococcus neoformans regulates homeostasis and virulence by providing inositol trisphosphate as a substrate for Arg1 kinase.

Lev S, Desmarini D, Li C, Chayakulkeeree M, Traven A, Sorrell TC, Djordjevic JT.

Infect Immun. 2013 Apr;81(4):1245-55. doi: 10.1128/IAI.01421-12. Epub 2013 Feb 4.

6.

Feedback activation of phospholipase C via intracellular mobilization and store-operated influx of Ca2+ in insulin-secreting beta-cells.

Thore S, Dyachok O, Gylfe E, Tengholm A.

J Cell Sci. 2005 Oct 1;118(Pt 19):4463-71. Epub 2005 Sep 13.

7.

Use of Fluorescence Resonance Energy Transfer-based Biosensors for the Quantitative Analysis of Inositol 1,4,5-Trisphosphate Dynamics in Calcium Oscillations.

Tanimura A, Morita T, Nezu A, Shitara A, Hashimoto N, Tojyo Y.

J Biol Chem. 2009 Mar 27;284(13):8910-7. doi: 10.1074/jbc.M805865200. Epub 2009 Jan 21.

8.

Measurement of phospholipase C by monitoring inositol phosphates using [³H]inositol-labeling protocols in permeabilized cells.

Skippen A, Swigart P, Cockcroft S.

Methods Mol Biol. 2005;312:183-93. doi: 10.1385/1-59259-949-4:183.

PMID:
21341099
9.

Controlling calcium entry.

Taylor CW.

Cell. 2002 Dec 13;111(6):767-9. Review.

10.

Role of the phospholipase C-inositol 1,4,5-trisphosphate pathway in calcium release-activated calcium current and capacitative calcium entry.

Broad LM, Braun FJ, Lievremont JP, Bird GS, Kurosaki T, Putney JW Jr.

J Biol Chem. 2001 May 11;276(19):15945-52. Epub 2001 Feb 13.

11.

Biosensors to measure inositol 1,4,5-trisphosphate concentration in living cells with spatiotemporal resolution.

Remus TP, Zima AV, Bossuyt J, Bare DJ, Martin JL, Blatter LA, Bers DM, Mignery GA.

J Biol Chem. 2006 Jan 6;281(1):608-16. Epub 2005 Oct 24.

12.

Fluorescent biosensor for quantitative real-time measurements of inositol 1,4,5-trisphosphate in single living cells.

Tanimura A, Nezu A, Morita T, Turner RJ, Tojyo Y.

J Biol Chem. 2004 Sep 10;279(37):38095-8. Epub 2004 Jul 22.

13.
14.
15.

Spatiotemporal dynamics of inositol 1,4,5-trisphosphate that underlies complex Ca2+ mobilization patterns.

Hirose K, Kadowaki S, Tanabe M, Takeshima H, Iino M.

Science. 1999 May 28;284(5419):1527-30.

16.

Fertilization and inositol 1,4,5-trisphosphate (IP3)-induced calcium release in type-1 inositol 1,4,5-trisphosphate receptor down-regulated bovine eggs.

Malcuit C, Knott JG, He C, Wainwright T, Parys JB, Robl JM, Fissore RA.

Biol Reprod. 2005 Jul;73(1):2-13. Epub 2005 Mar 2.

18.

Recombinant phospholipase Czeta has high Ca2+ sensitivity and induces Ca2+ oscillations in mouse eggs.

Kouchi Z, Fukami K, Shikano T, Oda S, Nakamura Y, Takenawa T, Miyazaki S.

J Biol Chem. 2004 Mar 12;279(11):10408-12. Epub 2003 Dec 29.

19.

Expression and characterization of an inositol 1,4,5-trisphosphate binding domain of phosphatidylinositol-specific phospholipase C-delta 1.

Yagisawa H, Hirata M, Kanematsu T, Watanabe Y, Ozaki S, Sakuma K, Tanaka H, Yabuta N, Kamata H, Hirata H, et al.

J Biol Chem. 1994 Aug 5;269(31):20179-88.

20.

Replacements of single basic amino acids in the pleckstrin homology domain of phospholipase C-delta1 alter the ligand binding, phospholipase activity, and interaction with the plasma membrane.

Yagisawa H, Sakuma K, Paterson HF, Cheung R, Allen V, Hirata H, Watanabe Y, Hirata M, Williams RL, Katan M.

J Biol Chem. 1998 Jan 2;273(1):417-24.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk