Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 97

1.

Macroscopic transport of mega-ampere electron currents in aligned carbon-nanotube arrays.

Chatterjee G, Singh PK, Ahmed S, Robinson AP, Lad AD, Mondal S, Narayanan V, Srivastava I, Koratkar N, Pasley J, Sood AK, Kumar GR.

Phys Rev Lett. 2012 Jun 8;108(23):235005. Epub 2012 Jun 8.

PMID:
23003966
[PubMed]
2.

High-resolution measurements of the spatial and temporal evolution of megagauss magnetic fields created in intense short-pulse laser-plasma interactions.

Chatterjee G, Singh PK, Adak A, Lad AD, Kumar GR.

Rev Sci Instrum. 2014 Jan;85(1):013505. doi: 10.1063/1.4861535.

PMID:
24517763
[PubMed - in process]
3.

Dynamic control over mega-ampere electron currents in metals using ionization-driven resistive magnetic fields.

Sentoku Y, d'Humières E, Romagnani L, Audebert P, Fuchs J.

Phys Rev Lett. 2011 Sep 23;107(13):135005. Epub 2011 Sep 23.

PMID:
22026865
[PubMed - indexed for MEDLINE]
4.

Effect of target material on fast-electron transport and resistive collimation.

Chawla S, Wei MS, Mishra R, Akli KU, Chen CD, McLean HS, Morace A, Patel PK, Sawada H, Sentoku Y, Stephens RB, Beg FN.

Phys Rev Lett. 2013 Jan 11;110(2):025001. Epub 2013 Jan 7.

PMID:
23383907
[PubMed]
5.

Dynamics of self-generated, large amplitude magnetic fields following high-intensity laser matter interaction.

Sarri G, Macchi A, Cecchetti CA, Kar S, Liseykina TV, Yang XH, Dieckmann ME, Fuchs J, Galimberti M, Gizzi LA, Jung R, Kourakis I, Osterholz J, Pegoraro F, Robinson AP, Romagnani L, Willi O, Borghesi M.

Phys Rev Lett. 2012 Nov 16;109(20):205002. Epub 2012 Nov 13.

PMID:
23215496
[PubMed]
6.

Super-long aligned TiO2/carbon nanotube arrays.

Zhao Y, Hu Y, Li Y, Zhang H, Zhang S, Qu L, Shi G, Dai L.

Nanotechnology. 2010 Dec 17;21(50):505702. doi: 10.1088/0957-4484/21/50/505702. Epub 2010 Nov 22.

PMID:
21098930
[PubMed]
7.

Fast advection of magnetic fields by hot electrons.

Willingale L, Thomas AG, Nilson PM, Kaluza MC, Bandyopadhyay S, Dangor AE, Evans RG, Fernandes P, Haines MG, Kamperidis C, Kingham RJ, Minardi S, Notley M, Ridgers CP, Rozmus W, Sherlock M, Tatarakis M, Wei MS, Najmudin Z, Krushelnick K.

Phys Rev Lett. 2010 Aug 27;105(9):095001. Epub 2010 Aug 24.

PMID:
20868167
[PubMed]
8.

Anisotropic thermal diffusivity characterization of aligned carbon nanotube-polymer composites.

Borca-Tasciuc T, Mazumder M, Son Y, Pal SK, Schadler LS, Ajayan PM.

J Nanosci Nanotechnol. 2007 Apr-May;7(4-5):1581-8.

PMID:
17450929
[PubMed - indexed for MEDLINE]
9.

Laser-generated ultrashort multimegagauss magnetic pulses in plasmas.

Sandhu AS, Dharmadhikari AK, Rajeev PP, Kumar GR, Sengupta S, Das A, Kaw PK.

Phys Rev Lett. 2002 Nov 25;89(22):225002. Epub 2002 Nov 11.

PMID:
12485075
[PubMed]
10.

The evolution of well-aligned amorphous carbon nanotubes and porous ZnO/C core-shell nanorod arrays for photosensor applications.

Wang RC, Hsu CC, Chen SJ.

Nanotechnology. 2011 Jan 21;22(3):035704. doi: 10.1088/0957-4484/22/3/035704. Epub 2010 Dec 9.

PMID:
21149959
[PubMed]
11.

Ultrahigh-current field emission from sandwich-grown well-aligned uniform multi-walled carbon nanotube arrays with high adherence strength.

Chen Z, Zhang Q, Lan P, Zhu B, Yu T, Cao G, Engelsen Dd.

Nanotechnology. 2007 Jul 4;18(26):265702. doi: 10.1088/0957-4484/18/26/265702. Epub 2007 Jun 5.

PMID:
21730406
[PubMed]
12.

Direct, absolute, and in situ measurement of fast electron transport via Cherenkov emission.

Habara H, Ohta K, Tanaka KA, Kumar GR, Krishnamurthy M, Kahaly S, Mondal S, Bhuyan MK, Rajeev R, Zheng J.

Phys Rev Lett. 2010 Feb 5;104(5):055001. Epub 2010 Feb 3.

PMID:
20366770
[PubMed]
13.

Direct observation of turbulent magnetic fields in hot, dense laser produced plasmas.

Mondal S, Narayanan V, Ding WJ, Lad AD, Hao B, Ahmad S, Wang WM, Sheng ZM, Sengupta S, Kaw P, Das A, Kumar GR.

Proc Natl Acad Sci U S A. 2012 May 22;109(21):8011-5. doi: 10.1073/pnas.1200753109. Epub 2012 May 7.

PMID:
22566660
[PubMed - indexed for MEDLINE]
Free PMC Article
14.

Flux-dependent growth kinetics and diameter selectivity in single-wall carbon nanotube arrays.

Geohegan DB, Puretzky AA, Jackson JJ, Rouleau CM, Eres G, More KL.

ACS Nano. 2011 Oct 25;5(10):8311-21. doi: 10.1021/nn2030397. Epub 2011 Sep 15.

PMID:
21916517
[PubMed]
15.

Visible light photoelectrochemical performance of W-loaded TiO2 nanotube arrays: structural properties.

Lai CW, Sreekantan S.

J Nanosci Nanotechnol. 2012 Apr;12(4):3170-4.

PMID:
22849082
[PubMed]
16.

Periodically striped films produced from super-aligned carbon nanotube arrays.

Liu K, Sun Y, Liu P, Wang J, Li Q, Fan S, Jiang K.

Nanotechnology. 2009 Aug 19;20(33):335705. doi: 10.1088/0957-4484/20/33/335705. Epub 2009 Jul 28.

PMID:
19636102
[PubMed]
17.

Determination of the effective Young's modulus of vertically aligned carbon nanotube arrays: a simple nanotube-based varactor.

Olofsson N, Ek-Weis J, Eriksson A, Idda T, Campbell EE.

Nanotechnology. 2009 Sep 23;20(38):385710. doi: 10.1088/0957-4484/20/38/385710. Epub 2009 Aug 28.

PMID:
19713579
[PubMed]
18.

Growth of millimeter-long and horizontally aligned single-walled carbon nanotubes on flat substrates.

Huang S, Cai X, Liu J.

J Am Chem Soc. 2003 May 14;125(19):5636-7.

PMID:
12733894
[PubMed]
19.

Modifying surface structure to tune surface properties of vertically aligned carbon nanotube films.

Ci L, Ajayan PM.

J Nanosci Nanotechnol. 2010 Jun;10(6):3854-9.

PMID:
20355379
[PubMed]
20.

High-yield growth of vertically aligned carbon nanotubes on a continuously moving substrate.

Guzmán de Villoria R, Figueredo SL, Hart AJ, Steiner SA 3rd, Slocum AH, Wardle BL.

Nanotechnology. 2009 Oct 7;20(40):405611. doi: 10.1088/0957-4484/20/40/405611. Epub 2009 Sep 14.

PMID:
19752503
[PubMed - indexed for MEDLINE]

Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk