Format
Items per page
Sort by

Send to:

Choose Destination

Links from PubMed

Items: 1 to 20 of 159

1.

Predictive modeling of biomass component tradeoffs in Brassica napus developing oilseeds based on in silico manipulation of storage metabolism.

Schwender J, Hay JO.

Plant Physiol. 2012 Nov;160(3):1218-36. doi: 10.1104/pp.112.203927. Epub 2012 Sep 14.

2.
3.

Metabolic network reconstruction and flux variability analysis of storage synthesis in developing oilseed rape (Brassica napus L.) embryos.

Hay J, Schwender J.

Plant J. 2011 Aug;67(3):526-41. doi: 10.1111/j.1365-313X.2011.04613.x. Epub 2011 May 27.

4.

Quantitative Multilevel Analysis of Central Metabolism in Developing Oilseeds of Oilseed Rape during in Vitro Culture.

Schwender J, Hebbelmann I, Heinzel N, Hildebrandt T, Rogers A, Naik D, Klapperstück M, Braun HP, Schreiber F, Denolf P, Borisjuk L, Rolletschek H.

Plant Physiol. 2015 Jul;168(3):828-48. doi: 10.1104/pp.15.00385. Epub 2015 May 5.

5.

Mitochondrial metabolism in developing embryos of Brassica napus.

Schwender J, Shachar-Hill Y, Ohlrogge JB.

J Biol Chem. 2006 Nov 10;281(45):34040-7. Epub 2006 Sep 12.

6.

An in silico compartmentalized metabolic model of Brassica napus enables the systemic study of regulatory aspects of plant central metabolism.

Pilalis E, Chatziioannou A, Thomasset B, Kolisis F.

Biotechnol Bioeng. 2011 Jul;108(7):1673-82. doi: 10.1002/bit.23107. Epub 2011 Mar 11.

PMID:
21337341
7.

Analysis of metabolic flux phenotypes for two Arabidopsis mutants with severe impairment in seed storage lipid synthesis.

Lonien J, Schwender J.

Plant Physiol. 2009 Nov;151(3):1617-34. doi: 10.1104/pp.109.144121. Epub 2009 Sep 15.

8.

Rubisco without the Calvin cycle improves the carbon efficiency of developing green seeds.

Schwender J, Goffman F, Ohlrogge JB, Shachar-Hill Y.

Nature. 2004 Dec 9;432(7018):779-82.

PMID:
15592419
10.

Embryo-specific reduction of ADP-Glc pyrophosphorylase leads to an inhibition of starch synthesis and a delay in oil accumulation in developing seeds of oilseed rape.

Vigeolas H, Möhlmann T, Martini N, Neuhaus HE, Geigenberger P.

Plant Physiol. 2004 Sep;136(1):2676-86. Epub 2004 Aug 27.

11.

Altered seed oil and glucosinolate levels in transgenic plants overexpressing the Brassica napus SHOOTMERISTEMLESS gene.

Elhiti M, Yang C, Chan A, Durnin DC, Belmonte MF, Ayele BT, Tahir M, Stasolla C.

J Exp Bot. 2012 Jul;63(12):4447-61. doi: 10.1093/jxb/ers125. Epub 2012 May 4.

12.

Metabolic control analysis is helpful for informed genetic manipulation of oilseed rape (Brassica napus) to increase seed oil content.

Weselake RJ, Shah S, Tang M, Quant PA, Snyder CL, Furukawa-Stoffer TL, Zhu W, Taylor DC, Zou J, Kumar A, Hall L, Laroche A, Rakow G, Raney P, Moloney MM, Harwood JL.

J Exp Bot. 2008;59(13):3543-9. doi: 10.1093/jxb/ern206. Epub 2008 Aug 13.

13.

Carbon and nitrogen provisions alter the metabolic flux in developing soybean embryos.

Allen DK, Young JD.

Plant Physiol. 2013 Mar;161(3):1458-75. doi: 10.1104/pp.112.203299. Epub 2013 Jan 11.

14.

Integration of a constraint-based metabolic model of Brassica napus developing seeds with (13)C-metabolic flux analysis.

Hay JO, Shi H, Heinzel N, Hebbelmann I, Rolletschek H, Schwender J.

Front Plant Sci. 2014 Dec 19;5:724. doi: 10.3389/fpls.2014.00724. eCollection 2014.

15.

Flux variability analysis: application to developing oilseed rape embryos using toolboxes for constraint-based modeling.

Hay JO, Schwender J.

Methods Mol Biol. 2014;1090:301-16. doi: 10.1007/978-1-62703-688-7_18.

PMID:
24222423
16.

The BnGRF2 gene (GRF2-like gene from Brassica napus) enhances seed oil production through regulating cell number and plant photosynthesis.

Liu J, Hua W, Yang HL, Zhan GM, Li RJ, Deng LB, Wang XF, Liu GH, Wang HZ.

J Exp Bot. 2012 Jun;63(10):3727-40. doi: 10.1093/jxb/ers066. Epub 2012 Mar 21.

17.

Genetic and molecular approaches to improve nutritional value of Brassica napus L. seed.

Nesi N, Delourme R, Brégeon M, Falentin C, Renard M.

C R Biol. 2008 Oct;331(10):763-71. doi: 10.1016/j.crvi.2008.07.018. Epub 2008 Sep 4. Review.

PMID:
18926490
18.

Enhanced seed oil content by overexpressing genes related to triacylglyceride synthesis.

Liu F, Xia Y, Wu L, Fu D, Hayward A, Luo J, Yan X, Xiong X, Fu P, Wu G, Lu C.

Gene. 2015 Feb 25;557(2):163-71. doi: 10.1016/j.gene.2014.12.029. Epub 2014 Dec 16.

PMID:
25523093
19.

Proteomic analysis of seed filling in Brassica napus. Developmental characterization of metabolic isozymes using high-resolution two-dimensional gel electrophoresis.

Hajduch M, Casteel JE, Hurrelmeyer KE, Song Z, Agrawal GK, Thelen JJ.

Plant Physiol. 2006 May;141(1):32-46. Epub 2006 Mar 16. Erratum in: Plant Physiol. 2006 Jul;141(3):1159.

20.

Enhanced seed oil production in canola by conditional expression of Brassica napus LEAFY COTYLEDON1 and LEC1-LIKE in developing seeds.

Tan H, Yang X, Zhang F, Zheng X, Qu C, Mu J, Fu F, Li J, Guan R, Zhang H, Wang G, Zuo J.

Plant Physiol. 2011 Jul;156(3):1577-88. doi: 10.1104/pp.111.175000. Epub 2011 May 11.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk