Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 847

1.

Local hemodynamics at the rupture point of cerebral aneurysms determined by computational fluid dynamics analysis.

Omodaka S, Sugiyama S, Inoue T, Funamoto K, Fujimura M, Shimizu H, Hayase T, Takahashi A, Tominaga T.

Cerebrovasc Dis. 2012;34(2):121-9. doi: 10.1159/000339678. Epub 2012 Aug 1.

PMID:
22965244
2.

Using computational fluid dynamics analysis to characterize local hemodynamic features of middle cerebral artery aneurysm rupture points.

Fukazawa K, Ishida F, Umeda Y, Miura Y, Shimosaka S, Matsushima S, Taki W, Suzuki H.

World Neurosurg. 2015 Jan;83(1):80-6. doi: 10.1016/j.wneu.2013.02.012. Epub 2013 Feb 9.

PMID:
23403347
3.

Patient-specific hemodynamic analysis of small internal carotid artery-ophthalmic artery aneurysms.

Chien A, Tateshima S, Sayre J, Castro M, Cebral J, Viñuela F.

Surg Neurol. 2009 Nov;72(5):444-50; discussion 450. doi: 10.1016/j.surneu.2008.12.013. Epub 2009 Mar 29.

PMID:
19329152
4.

Computational fluid dynamic analysis of intracranial aneurysmal bleb formation.

Russell JH, Kelson N, Barry M, Pearcy M, Fletcher DF, Winter CD.

Neurosurgery. 2013 Dec;73(6):1061-8; discussion 1068-9. doi: 10.1227/NEU.0000000000000137.

PMID:
23949275
5.

Low wall shear stress is independently associated with the rupture status of middle cerebral artery aneurysms.

Miura Y, Ishida F, Umeda Y, Tanemura H, Suzuki H, Matsushima S, Shimosaka S, Taki W.

Stroke. 2013 Feb;44(2):519-21. doi: 10.1161/STROKEAHA.112.675306. Epub 2012 Dec 6.

6.

Magnitude and role of wall shear stress on cerebral aneurysm: computational fluid dynamic study of 20 middle cerebral artery aneurysms.

Shojima M, Oshima M, Takagi K, Torii R, Hayakawa M, Katada K, Morita A, Kirino T.

Stroke. 2004 Nov;35(11):2500-5.

7.

Characterization of cerebral aneurysms for assessing risk of rupture by using patient-specific computational hemodynamics models.

Cebral JR, Castro MA, Burgess JE, Pergolizzi RS, Sheridan MJ, Putman CM.

AJNR Am J Neuroradiol. 2005 Nov-Dec;26(10):2550-9.

8.

Changes in wall shear stress magnitude after aneurysm rupture.

Kono K, Tomura N, Yoshimura R, Terada T.

Acta Neurochir (Wien). 2013 Aug;155(8):1559-63. doi: 10.1007/s00701-013-1773-2. Epub 2013 May 29.

PMID:
23715949
9.

Influence of hemodynamic factors on rupture of intracranial aneurysms: patient-specific 3D mirror aneurysms model computational fluid dynamics simulation.

Lu G, Huang L, Zhang XL, Wang SZ, Hong Y, Hu Z, Geng DY.

AJNR Am J Neuroradiol. 2011 Aug;32(7):1255-61. doi: 10.3174/ajnr.A2461. Epub 2011 Jul 14.

10.

Wall shear stress on ruptured and unruptured intracranial aneurysms at the internal carotid artery.

Jou LD, Lee DH, Morsi H, Mawad ME.

AJNR Am J Neuroradiol. 2008 Oct;29(9):1761-7. doi: 10.3174/ajnr.A1180. Epub 2008 Jul 3.

11.

Hemodynamics and rupture of terminal cerebral aneurysms.

Castro M, Putman C, Radaelli A, Frangi A, Cebral J.

Acad Radiol. 2009 Oct;16(10):1201-7. doi: 10.1016/j.acra.2009.03.022. Epub 2009 Jun 23.

PMID:
19553143
12.

Distinctive flow pattern of wall shear stress and oscillatory shear index: similarity and dissimilarity in ruptured and unruptured cerebral aneurysm blebs.

Kawaguchi T, Nishimura S, Kanamori M, Takazawa H, Omodaka S, Sato K, Maeda N, Yokoyama Y, Midorikawa H, Sasaki T, Nishijima M.

J Neurosurg. 2012 Oct;117(4):774-80. doi: 10.3171/2012.7.JNS111991. Epub 2012 Aug 24.

PMID:
22920960
13.

The effect of inlet waveforms on computational hemodynamics of patient-specific intracranial aneurysms.

Xiang J, Siddiqui AH, Meng H.

J Biomech. 2014 Dec 18;47(16):3882-90. doi: 10.1016/j.jbiomech.2014.09.034. Epub 2014 Oct 13.

14.

Hemodynamic analysis of intracranial aneurysms with daughter blebs.

Zhang Y, Mu S, Chen J, Wang S, Li H, Yu H, Jiang F, Yang X.

Eur Neurol. 2011;66(6):359-67. doi: 10.1159/000332814. Epub 2011 Nov 29.

PMID:
22134355
15.

A study of wall shear stress in 12 aneurysms with respect to different viscosity models and flow conditions.

Evju Ø, Valen-Sendstad K, Mardal KA.

J Biomech. 2013 Nov 15;46(16):2802-8. doi: 10.1016/j.jbiomech.2013.09.004. Epub 2013 Sep 16.

PMID:
24099744
16.

Hemodynamic-morphologic discriminants for intracranial aneurysm rupture.

Xiang J, Natarajan SK, Tremmel M, Ma D, Mocco J, Hopkins LN, Siddiqui AH, Levy EI, Meng H.

Stroke. 2011 Jan;42(1):144-52. doi: 10.1161/STROKEAHA.110.592923. Epub 2010 Nov 24.

17.

Blood flow dynamics in patient-specific cerebral aneurysm models: the relationship between wall shear stress and aneurysm area index.

Valencia A, Morales H, Rivera R, Bravo E, Galvez M.

Med Eng Phys. 2008 Apr;30(3):329-40. Epub 2007 Jun 6.

PMID:
17556005
18.

Magnetic resonance fluid dynamics for intracranial aneurysms--comparison with computed fluid dynamics.

Naito T, Miyachi S, Matsubara N, Isoda H, Izumi T, Haraguchi K, Takahashi I, Ishii K, Wakabayashi T.

Acta Neurochir (Wien). 2012 Jun;154(6):993-1001. doi: 10.1007/s00701-012-1305-5. Epub 2012 Mar 4.

PMID:
22392013
19.

Statistical wall shear stress maps of ruptured and unruptured middle cerebral artery aneurysms.

Goubergrits L, Schaller J, Kertzscher U, van den Bruck N, Poethkow K, Petz Ch, Hege HC, Spuler A.

J R Soc Interface. 2012 Apr 7;9(69):677-88. doi: 10.1098/rsif.2011.0490. Epub 2011 Sep 28.

20.

Hemodynamic characteristics at the rupture site of cerebral aneurysms: a case study.

Kono K, Fujimoto T, Shintani A, Terada T.

Neurosurgery. 2012 Dec;71(6):E1202-8; discussion 1209. doi: 10.1227/NEU.0b013e31826f7ede.

PMID:
22922678
Items per page

Supplemental Content

Write to the Help Desk