Format
Items per page
Sort by

Send to:

Choose Destination

Links from PubMed

Items: 1 to 20 of 223

1.

Long-range electron transport in Geobacter sulfurreducens biofilms is redox gradient-driven.

Snider RM, Strycharz-Glaven SM, Tsoi SD, Erickson JS, Tender LM.

Proc Natl Acad Sci U S A. 2012 Sep 18;109(38):15467-72. Epub 2012 Sep 5.

2.

Spatially resolved confocal resonant Raman microscopic analysis of anode-grown Geobacter sulfurreducens biofilms.

Lebedev N, Strycharz-Glaven SM, Tender LM.

Chemphyschem. 2014 Feb 3;15(2):320-7. doi: 10.1002/cphc.201300984. Epub 2014 Jan 8.

PMID:
24402861
3.

On electron transport through Geobacter biofilms.

Bond DR, Strycharz-Glaven SM, Tender LM, Torres CI.

ChemSusChem. 2012 Jun;5(6):1099-105. doi: 10.1002/cssc.201100748. Epub 2012 May 21.

PMID:
22615023
4.

pH, redox potential and local biofilm potential microenvironments within Geobacter sulfurreducens biofilms and their roles in electron transfer.

Babauta JT, Nguyen HD, Harrington TD, Renslow R, Beyenal H.

Biotechnol Bioeng. 2012 Oct;109(10):2651-62. doi: 10.1002/bit.24538. Epub 2012 May 11.

5.

Study of the mechanism of catalytic activity of G. sulfurreducens biofilm anodes during biofilm growth.

Strycharz-Glaven SM, Tender LM.

ChemSusChem. 2012 Jun;5(6):1106-18. doi: 10.1002/cssc.201100737. Epub 2012 May 13.

PMID:
22581467
6.

Anode biofilm transcriptomics reveals outer surface components essential for high density current production in Geobacter sulfurreducens fuel cells.

Nevin KP, Kim BC, Glaven RH, Johnson JP, Woodard TL, Methé BA, Didonato RJ, Covalla SF, Franks AE, Liu A, Lovley DR.

PLoS One. 2009 May 20;4(5):e5628. doi: 10.1371/journal.pone.0005628.

7.

Selecting anode-respiring bacteria based on anode potential: phylogenetic, electrochemical, and microscopic characterization.

Torres CI, Krajmalnik-Brown R, Parameswaran P, Marcus AK, Wanger G, Gorby YA, Rittmann BE.

Environ Sci Technol. 2009 Dec 15;43(24):9519-24. doi: 10.1021/es902165y.

PMID:
20000550
8.

Limitations for current production in Geobacter sulfurreducens biofilms.

Bonanni PS, Bradley DF, Schrott GD, Busalmen JP.

ChemSusChem. 2013 Apr;6(4):711-20. doi: 10.1002/cssc.201200671. Epub 2013 Feb 18.

PMID:
23417889
9.

Electron donors supporting growth and electroactivity of Geobacter sulfurreducens anode biofilms.

Speers AM, Reguera G.

Appl Environ Microbiol. 2012 Jan;78(2):437-44. doi: 10.1128/AEM.06782-11. Epub 2011 Nov 18.

10.
11.

Gene expression and deletion analysis of mechanisms for electron transfer from electrodes to Geobacter sulfurreducens.

Strycharz SM, Glaven RH, Coppi MV, Gannon SM, Perpetua LA, Liu A, Nevin KP, Lovley DR.

Bioelectrochemistry. 2011 Feb;80(2):142-50. doi: 10.1016/j.bioelechem.2010.07.005. Epub 2010 Jul 23.

PMID:
20696622
12.

Charge transport through Geobacter sulfurreducens biofilms grown on graphite rods.

Katuri KP, Rengaraj S, Kavanagh P, O'Flaherty V, Leech D.

Langmuir. 2012 May 22;28(20):7904-13. doi: 10.1021/la2047036. Epub 2012 May 10.

PMID:
22524560
13.

Long-distance electron transfer by G. sulfurreducens biofilms results in accumulation of reduced c-type cytochromes.

Liu Y, Bond DR.

ChemSusChem. 2012 Jun;5(6):1047-53. doi: 10.1002/cssc.201100734. Epub 2012 May 10.

14.

Electrochemical characterization of anodic biofilms enriched with glucose and acetate in single-chamber microbial fuel cells.

Yuan Y, Zhou S, Xu N, Zhuang L.

Colloids Surf B Biointerfaces. 2011 Feb 1;82(2):641-6. doi: 10.1016/j.colsurfb.2010.10.015. Epub 2010 Oct 15.

PMID:
21050727
15.

Microtoming coupled to microarray analysis to evaluate the spatial metabolic status of Geobacter sulfurreducens biofilms.

Franks AE, Nevin KP, Glaven RH, Lovley DR.

ISME J. 2010 Apr;4(4):509-19. doi: 10.1038/ismej.2009.137. Epub 2009 Dec 24.

PMID:
20033069
16.

Real-time measurements of the redox states of c-type cytochromes in electroactive biofilms: a confocal resonance Raman Microscopy study.

Virdis B, Millo D, Donose BC, Batstone DJ.

PLoS One. 2014 Feb 25;9(2):e89918. doi: 10.1371/journal.pone.0089918. eCollection 2014.

17.

Dynamic potential-dependent electron transport pathway shifts in anode biofilms of Geobacter sulfurreducens.

Yoho RA, Popat SC, Torres CI.

ChemSusChem. 2014 Dec;7(12):3413-9. doi: 10.1002/cssc.201402589. Epub 2014 Oct 28.

PMID:
25351488
18.

METABOLIC SPATIAL VARIABILITY IN ELECTRODE-RESPIRING GEOBACTER SULFURREDUCENS BIOFILMS.

Renslow R, Babauta J, Dohnalkova A, Boyanov M, Kemner K, Majors P, Fredrickson J, Beyenal H.

Energy Environ Sci. 2013 Jun 1;6(6):1827-1836.

19.

Stepping stones in the electron transport from cells to electrodes in Geobacter sulfurreducens biofilms.

Bonanni PS, Massazza D, Busalmen JP.

Phys Chem Chem Phys. 2013 Jul 7;15(25):10300-6. doi: 10.1039/c3cp50411e. Epub 2013 May 22.

PMID:
23698325
20.

Negative faradaic resistance in extracellular electron transfer by anode-respiring Geobacter sulfurreducens cells.

Matsuda S, Liu H, Kato S, Hashimoto K, Nakanishi S.

Environ Sci Technol. 2011 Dec 1;45(23):10163-9. doi: 10.1021/es200834b. Epub 2011 Nov 2.

PMID:
22047596
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk