Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 107

1.

Evolution of flux control in the glucosinolate pathway in Arabidopsis thaliana.

Olson-Manning CF, Lee CR, Rausher MD, Mitchell-Olds T.

Mol Biol Evol. 2013 Jan;30(1):14-23. doi: 10.1093/molbev/mss204. Epub 2012 Aug 25.

2.

Flux Control in a Defense Pathway in Arabidopsis thaliana Is Robust to Environmental Perturbations and Controls Variation in Adaptive Traits.

Olson-Manning CF, Strock CF, Mitchell-Olds T.

G3 (Bethesda). 2015 Sep 10;5(11):2421-7. doi: 10.1534/g3.115.021816.

3.

Transcriptional responses of Arabidopsis thaliana ecotypes with different glucosinolate profiles after attack by polyphagous Myzus persicae and oligophagous Brevicoryne brassicae.

Kusnierczyk A, Winge P, Midelfart H, Armbruster WS, Rossiter JT, Bones AM.

J Exp Bot. 2007;58(10):2537-52. Epub 2007 Jun 1.

4.

HAG2/MYB76 and HAG3/MYB29 exert a specific and coordinated control on the regulation of aliphatic glucosinolate biosynthesis in Arabidopsis thaliana.

Gigolashvili T, Engqvist M, Yatusevich R, Müller C, Flügge UI.

New Phytol. 2008;177(3):627-42. Epub 2007 Nov 27.

5.

Arabidopsis thaliana encodes a bacterial-type heterodimeric isopropylmalate isomerase involved in both Leu biosynthesis and the Met chain elongation pathway of glucosinolate formation.

Knill T, Reichelt M, Paetz C, Gershenzon J, Binder S.

Plant Mol Biol. 2009 Oct;71(3):227-39. doi: 10.1007/s11103-009-9519-5. Epub 2009 Jul 14.

6.

Modulation of CYP79 genes and glucosinolate profiles in Arabidopsis by defense signaling pathways.

Mikkelsen MD, Petersen BL, Glawischnig E, Jensen AB, Andreasson E, Halkier BA.

Plant Physiol. 2003 Jan;131(1):298-308.

7.

The evolution of control and distribution of adaptive mutations in a metabolic pathway.

Wright KM, Rausher MD.

Genetics. 2010 Feb;184(2):483-502. doi: 10.1534/genetics.109.110411. Epub 2009 Dec 4.

8.

Structural and functional evolution of isopropylmalate dehydrogenases in the leucine and glucosinolate pathways of Arabidopsis thaliana.

He Y, Galant A, Pang Q, Strul JM, Balogun SF, Jez JM, Chen S.

J Biol Chem. 2011 Aug 19;286(33):28794-801. doi: 10.1074/jbc.M111.262519. Epub 2011 Jun 22.

9.

Role of camalexin, indole glucosinolates, and side chain modification of glucosinolate-derived isothiocyanates in defense of Arabidopsis against Sclerotinia sclerotiorum.

Stotz HU, Sawada Y, Shimada Y, Hirai MY, Sasaki E, Krischke M, Brown PD, Saito K, Kamiya Y.

Plant J. 2011 Jul;67(1):81-93. doi: 10.1111/j.1365-313X.2011.04578.x. Epub 2011 Apr 27.

10.

The gene controlling the indole glucosinolate modifier1 quantitative trait locus alters indole glucosinolate structures and aphid resistance in Arabidopsis.

Pfalz M, Vogel H, Kroymann J.

Plant Cell. 2009 Mar;21(3):985-99. doi: 10.1105/tpc.108.063115. Epub 2009 Mar 17.

11.

Metabolic engineering in Nicotiana benthamiana reveals key enzyme functions in Arabidopsis indole glucosinolate modification.

Pfalz M, Mikkelsen MD, Bednarek P, Olsen CE, Halkier BA, Kroymann J.

Plant Cell. 2011 Feb;23(2):716-29. doi: 10.1105/tpc.110.081711. Epub 2011 Feb 11.

12.

The impact of the absence of aliphatic glucosinolates on insect herbivory in Arabidopsis.

Beekwilder J, van Leeuwen W, van Dam NM, Bertossi M, Grandi V, Mizzi L, Soloviev M, Szabados L, Molthoff JW, Schipper B, Verbocht H, de Vos RC, Morandini P, Aarts MG, Bovy A.

PLoS One. 2008 Apr 30;3(4):e2068. doi: 10.1371/journal.pone.0002068.

13.

Responses of Arabidopsis thaliana plant lines differing in hydroxylation of aliphatic glucosinolate side chains to feeding of a generalist and specialist caterpillar.

Rohr F, Ulrichs C, Schreiner M, Zrenner R, Mewis I.

Plant Physiol Biochem. 2012 Jun;55:52-9. doi: 10.1016/j.plaphy.2012.03.005. Epub 2012 Mar 23.

PMID:
22543106
14.

Desulfo-glucosinolate sulfotransferases isolated from several Arabidopsis thaliana ecotypes differ in their sequence and enzyme kinetics.

Luczak S, Forlani F, Papenbrock J.

Plant Physiol Biochem. 2013 Feb;63:15-23. doi: 10.1016/j.plaphy.2012.11.005. Epub 2012 Nov 24.

PMID:
23220083
15.

Nitrile-specifier proteins involved in glucosinolate hydrolysis in Arabidopsis thaliana.

Kissen R, Bones AM.

J Biol Chem. 2009 May 1;284(18):12057-70. doi: 10.1074/jbc.M807500200. Epub 2009 Feb 18.

16.

A systems biology approach identifies a R2R3 MYB gene subfamily with distinct and overlapping functions in regulation of aliphatic glucosinolates.

Sønderby IE, Hansen BG, Bjarnholt N, Ticconi C, Halkier BA, Kliebenstein DJ.

PLoS One. 2007 Dec 19;2(12):e1322.

17.

Positive selection driving diversification in plant secondary metabolism.

Benderoth M, Textor S, Windsor AJ, Mitchell-Olds T, Gershenzon J, Kroymann J.

Proc Natl Acad Sci U S A. 2006 Jun 13;103(24):9118-23. Epub 2006 Jun 5.

18.

Evolutionary rate patterns of the Gibberellin pathway genes.

Yang YH, Zhang FM, Ge S.

BMC Evol Biol. 2009 Aug 18;9:206. doi: 10.1186/1471-2148-9-206.

19.

Metabolic and evolutionary costs of herbivory defense: systems biology of glucosinolate synthesis.

Bekaert M, Edger PP, Hudson CM, Pires JC, Conant GC.

New Phytol. 2012 Oct;196(2):596-605. doi: 10.1111/j.1469-8137.2012.04302.x. Epub 2012 Sep 4.

20.

Genetic control of natural variation in Arabidopsis glucosinolate accumulation.

Kliebenstein DJ, Kroymann J, Brown P, Figuth A, Pedersen D, Gershenzon J, Mitchell-Olds T.

Plant Physiol. 2001 Jun;126(2):811-25.

Items per page

Supplemental Content

Write to the Help Desk